Farklı Oranlarda DPDS Kullanılarak Devulkanize Edilmiş Atık Taşıt Lastikleri İlave Edilen SBR Malzemenin Mekanik Özelliklerinin İncelenmesi

Oda sıcaklığında öğütülen atık taşıt lastiği tozu mikrodalga yöntemiyle devulkanize edilmiştir. İşlemde devulkanizasyon ajanı olarak, kükürt bağlarının (S-S) koparılmasında etkinliği çeşitli çalışmalarda ortaya konulmuş olan, DPDS (difenildisülfür) kullanılmıştır. Mikrodalga gücü sabit tutularak, zamanın ve DPDS miktarının prosese etkileri incelenmiştir. İşlem görmemiş atık lastik tozu fiziksel ve termal olarak karakterize edilmiştir. 20 phr oranında atık lastik tozu ve aynı oranda devulkanize kauçuk (DVR) stiren bütadien kauçuğa (SBR 1723 ve SBR 1502) katılarak kompozit malzemeler hazırlanmıştır. Bu kompozitler orijinal SBR’den hazırlanan kontrol numunesiyle karşılaştırılmıştır. Devulkanizasyonun etkinliğini ortaya koyabilmek için devulkanize numunelerin çözünme oranları (sol content) belirlenmiş ve Fourier Transform Infrared Spektrofotometre (FTIR) analizi yapılmıştır. Elde edilen kompozit malzemelerin mekanik özellikleri incelenmiştir. Çalışmada, DVR katılan malzemelerde atık lastik tozu katılan malzemelere göre daha iyi özellikler elde edilmiştir, sonuçlar mikrodalga devulkanizasyonunun önemli avantajlar sağladığını göstermiştir. Kopma uzaması değeri, işlem görmemiş atık lastik tozu katılan kompozit malzemede %481 iken, 1 g DPDS katılarak 4 dk. süreyle devulkanize edilen kauçuğun katıldığı DVR/SBR kompozitte %578 olarak elde edilmiştir, böylece kopma uzaması değeri atık lastik tozunun devulkanizasyonuyla %20 oranında artmıştır.

Investigation of Mechanical Properties of SBR in which Added Devulcanized Waste Tire Rubber with Various Proportions of DPDS

The waste tire rubber that had been grounded in room temperature was devulcanized by using the microwave method. As the devulcanizing agent, diphenyldisulfide (DPDS), the efficiency of which in the breaking off of sulfur bonds (S-S) had been proven in various studies, was employed. By maintaining the microwave power at a fixed value, the effects of time and the DPDS amount on the process were investigated. The untreated waste tire rubber powder was characterized physically and thermally. Composite materials were prepared with 20 phr untreated waste tire rubber powder and devulcanized rubber (DVR) with the styrene butadiene rubber (SBR) matrix. These composites were compared with a control sample that was prepared from virgin SBR. The sol content (soluble part) and Fourier Transform Infrared Spectrophotometer (FTIR) analyses of the devulcanized samples have been examined to define the efficiency of devulcanization. The mechanical properties of the SBR composites were researched. In this study, it was found that using devulcanized rubber produced much better properties than using waste tire rubber powder, thereby showing the significant benefits of microwave devulcanization. At the DPDS content of 1 g, the elongation at break of the DVR 4 min/SBR composites increased to 578% from 481% for the untreated waste tire rubber powder and SBR composites, the elongation at break was enhanced by 20% by the devulcanization of waste tire rubber powder.

___

  • LASDER. “LASDER Lastik Sanayicileri Derneği - ÖTL Ömrünü Tamamlamış Lastik Değerlendirme Toplama Atık Lastik Geri Kazanım”. www.lasder.org.tr (12.02.2014).
  • Karabörk F. Atık Araç Tekerlek Lastiklerinde Mikrodalga Devulkanizasyon Parametrelerinin Lastiğin Mekanik Özelliklerine Etkileri. Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2012.
  • Rodgers MB. Rubber Tires. Editor: Mortensen A. Concise Encyclopedia of Composite Materials. 8237–8242,Oxford, London, Elsevier Science Ltd, 2006.
  • Williams PT, Elbaba IF, Chanfei W, Onwudili JA. “High Yield Hydrogen from the Pyrolysis-Catalytic Gasification of Waste Tyres”. Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 08-11 November, 2010.
  • Adhikari B, De D, Maiti S. “Reclamation and Recycling of Waste Rubber”. Progress in Polymer Science, 25(7), 909-948, 2000.
  • De SK, Isayev AI, Khait K. “Rubber Recycling”. USA, CRC Press, Taylor & Francis Group, 2005. 4 Dev. süresi (dk) 1 kontrol atık lastik tozu 2 4
  • Dev. süresi (dk) 55 kontrol atık lastik tozu 2 4 Dev. süresi (dk)
  • Turgut P, Yeşilata B. “Atık Lastik Katkılı Harç Plak ve Briketlerin Termo-Mekanik Davranışlarının Araştırılması”. Gazi Üniv., Müh.-Mim. Fak. Dergisi, 24(4), 651-658, 2009.
  • Yehia AA. “Recycling of Rubber Waste”. Polymer-Plastics Technology and Engineering, 43(6), 1735-1754, 2004.
  • Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM. “Science and Technology of Rubber Reclamation with Special Attention to NR-Based Waste Latex Products”. Progress in Polymer Science, 31(9), 811-834, 2006.
  • California Environmental Protection Agency. “Evaluation of Waste Tire Devulcanisation Technologies”. California Environmental Protection Agency, California, USA, 2004.
  • Dubkov KA, Semikolenov SV, Ivanov DP, Babushkin DE, Panov GI, Parmon VN. “Reclamation of Waste Tyre Rubber with Nitrous Oxide”. Polymer Degradation and Stability, 97(7), 1123-1130, 2012.
  • Sadaka F, Campistron I, Laguerre A, Pilard JF. “Controlled Chemical Degradation of Natural Rubber using Periodic Acid: Application for Recycling Waste Tyre Rubber”. Polymer Degradation and Stability, 97(5), 816-828, 2012.
  • Isayev AI, Yushanov SP, Chen J. “Ultrasonic Devulcanization of Rubber Vulcanizates. Part I: Process Model”. Journal of Applied Polymer Science, 59(5), 803- 813, 1996.
  • Zanchet A, Carli LN, Giovanela M, Crespo JS, Scuracchio C. H, Nunes RCR. “Characterization of Microwave- Devulcanized Composites of Ground SBR Scraps”. Journal of Elastomers and Plastics, 41(6), 497-507, 2009.
  • Fix SR. “Microwave Devulcanization of Rubber”. Elastomerics, 112(6), 38-40, 1980.
  • Sanchez BV. New Insights in Vulcanization Chemistry Using Microwaves as Heating Source, PhD Thesis, Universitat Ramon Llull, Spain, 2008.
  • Li Y, Zhao S, Wang Y. “Microbial Desulfurization of Ground Tire Rubber by Thiobasillus Ferrooxidans”. Polymer Degradation and Stability, 96(9), 1662-1668, 2011.
  • Zhang X, Lu C, Liang M. “Preparation of Rubber Composite from Ground Tire Rubber Reinforced with Waste-Tire Fiber through Mechanical Milling”. Journal of Applied Polymer Science, 103(6), 4087-4094, 2007.
  • Fukumori K, Matsushita M. “Material Recycling Technology of Crosslinked Rubber Waste”. R&D Rew Toyota, CRDL, 38(1), 39-47, 2003.
  • Yehia AA, Ismail MN, Hefny YA, Abdel-Bary EM, Mull MA. “Mechano-Chemical Reclamation of Waste Rubber Powder and its Effect on the Performance of NR and SBR Vulcanizates”. Journal of Elastomers and Plastics, 36(2), 109-123, 2004.
  • Jana GK, Das CK. “Recycling Natural Rubber Vulcanizates through Macromolecular Research, 13(1), 30-38, 2005. Devulcanization”.
  • De D, Das A, De D, Dey B, Debnath, SC, Roy BC. “Reclaiming of Ground Rubber Tire (GRT) by a Novel Reclaiming Agent”. European Polymer Journal, 42(4), 917- 927, 2006.
  • Zhang X, Lu C, Liang M. “Properties of Natural Rubber Vulcanizates Containing Mechanochemically Devulcanized Ground Tire Rubber”. Journal of Polymer Research, 16, 411–419, 2009.
  • Renukappa NM, Siddaramaiah Sudhaker Samuel RD, Sundara Rajan J, Lee JH. “Dielectric Properties of Carbon Black: SBR Composites”. Journal of Materials Science: Materials in Electronics, 20, 648-656, 2009.
  • Scuraccio CH, Waki DA, da Silva MLCP. “Thermal Analysis of Ground Tire Rubber Devulcanized By Microwave”. Journal of Thermal Analysis and Calorimetry, 87(3), 893-897, 2007.
  • Maridas B, Gupta BR. “Recycling of Waste Tire Rubber Powder”. KGK Kautschuk Gummi Kunststoffe, 5, 232-236, 2003.
  • Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM. “Model Compound Studies on the Devulcanization of Natural Rubber Using 2,3-Dimethyl-2Butene”. Rubber Chemistry and Technology, 8(4), 572-587, 2005.
  • Sanchez BV. New Insights in Vulcanization Chemistry Using Microwaves as Heating Source. Doctoral Thesis, Universitat Ramon Llull, Spain, 2008.
  • De D, Das A, De D, Dey B, Debnath SC, Roy BC. “Reclaiming of Ground Rubber Tire (GRT) by a Novel Reclaiming Agent”. European Polymer Journal, 42(4), 917-927, 2006.
  • Jana GK, Das CK. “Devulcanisation of Natural Rubber Vulcanizates by Mechanochemical Process”. Polymer- Plastics Technology and Engineering, 44(8-9), 1399-1412, 2005.
  • Li S, Lamminmaki J, Hanhi K. “Effect of Ground Rubber Powder and Devulcanizates on the Properties of Natural Rubber Compounds”. Journal of Applied Polymer Science, 97, 208-217, 2005.
  • Grigoryeva O, Fainleib A, Starostenko O, Danilenko I, Kozak N, Dudarenko G. “Ground Tire Rubber (GTR) Reclamation: Virgin Rubber/Reclaimed GTR”. Rubber Chemistry and Technology, 77(1), 131-146, 2004.
  • Bilgili E, Arastoopour H, Bernstein B. “Pulverization of Rubber Granulates Using the Solid-State Shear Extrusion (SSSE) Process: Part I. Process Concepts and Characteristics”. Journal of Powder Technology, 115(3), 265-277 2001.
  • Naskar AK, De SK, Bhowmick AK. “Characterization of Ground Rubber Tyre and its Effect on Natural Rubber Compound”. Rubber Chemistry and Technology, 73(5), 902-911, 2000. [35] Saiwari S, Dierkes WK, “Devulcanization of Whole Passenger Care Tire Material”. KGK Kautschuk, Gummi, Kunststoffe, 66(7-8), 20-25, 2013.
  • Zanchet A, Carli LN, Giovanela M, Brandalise RN, Crespo JS. “Use of Styrene Butadiene Rubber Industrial Waste Devulcanized by Microwave in Rubber Composites for Automotive Application”. Materials and Design, 39, 437-443, 2012.
  • Pistor V, Fiorio R, Ornaghi FG, Ornaghi Jr HL, Zattera AJ. “Degradation Kinetics of Vulcanized Ethylene-Propylene- Diene Terpolymer Residues”. Journal of Apply Polymer Science, 122(2), 1053-7, 2011.
  • Jiang K, Shi J, Ge Y, Zou R, Yao P, Li X, Zhang L. “Complete Devulcanization of Sulfur-Cured Butyl Rubber by Using Supercritical Carbon Dioxide”. Journal of Apply Polymer Science, 127(4), 2397-2406, 2013.
  • Kumar P. Investigating the Recycled Rubber Granulate- Virgin Rubber Interface. Doctoral Thesis, University of London, England, 2007.