Experimental and numerical analysis of cylindrical laminated glass shells

Lamine cam polivinil butiral (PVB) ara tabaka ile birbirine bağlanmış iki cam tabakadan oluşan emniyet cam türüdür. PVB ara tabaka, kırılma olsa bile cam tabakaları bir arada tutar ve yaralanma riskini en aza indirir. Uzun yıllardır ulaşım ve otomotiv endüstrilerinde kullanılmakta olan lamine cam birimler yük ve çevresel koşullara gösterdikleri büyük dirençler nedeniyle, günümüzde yaygın olarak mimari cam ürünlerinde kullanılmaktadırlar. Lamine camlar oldukça karmaşık mekanik davranış gösterirler çünkü çok ince oldukları için kolayca büyük yer değiştirmeler gösterirler ve malzeme özellikleri arasında büyük bir fark vardır. Lamine cam ünitelerin matematiksel karmaşıklıkları ve süreksiz gerilme dağılımları nedeniyle, çalışmaların çoğu lamine cam birimlerinin doğrusal olmayan davranışı yerine doğrusal davranışları ile ilgilidir. Bu çalışmada, silindirik lamine cam kabukların çözümlenmesi için sonlu elemanlar modeli geliştirilmiş ve modelin doğrulanması için deneysel çalışmalar yürütülmüştür. Sunulan grafiklerden gözlendiği gibi sayısal sonuçlar ve deneylerden elde edilen sonuçlar uyum içerisindedir

Silindirik lamine cam kabuk yapıların deneysel ve sayısal çözümlemesi

Laminated glass is a kind of safety glass which consists of two glass layers with an interlayer Polyvinyl Butyral (PVB) in between them. Even if the breaking happens, the glass layers are held together by the PVB interlayer and minimize the risk of injury. Laminated glass units have long been used in the transportation and automotive industries. Because of their resistance to a wide range of loading and environmental condition, nowadays they are extensively used in architectural glazing products Laminated glasses display highly complicated structural behavior because they can easily perform large displacement since they are very thin and there is a big difference between the material properties. Because of mathematical complexity and discontinuous stress distributions of laminated glass units most of the studies are about linear behavior rather than nonlinear behavior of the laminated glass units. In the current study, a finite element model is developed for the analysis of cylindrical laminated glass shells and experimental studies are carried out for the validation of model. It is observed from the figures presented, numerical results and experimental results from the tests are in good agreement

___

  • [1] Hooper JA. “On the bending of architectural laminated glass”. International Journal of Mechanical Sciences, 15, 309-323, 1973.
  • [2] Behr RA, Minor JE, Linden MP, Vallabhan CVG. “Laminated glass units under uniform radial pressure”. Journal of Structural Engineering, 111(5), 1037-1050, 1985.
  • [3] Behr RA, Minor JE, Norville HS. “Structural behavior of architectural laminated glass”. Journal of Structural Engineering, 119(1), 202-222, 1993.
  • [4] Behr RA, Linden MP, Minor JE. “Load duration and interlayer thickness effects on laminated glass”. Journal of Structural Engineering, 112(6), 1441-1453, 1986.
  • [5] Vallabhan CVG. “Iterative analysis of rectangular glass plates”. Journal of Structural Engineering, 109(2), 489-502, 1983.
  • [6] Vallabhan CVG, Das YC, Magdi M, Asik MZ, Bailey JR. “Analysis of laminated glass units”. Journal of Structural Engineering, 119(5), 1572-1585, 1993.
  • [7] Asik MZ, Vallabhan CVG. “On the convergence of nonlinear Plate Equations”. Computers and Structures, 65(2), 225-229, 1997.
  • [8] Asik MZ. “Laminated glass plate: revealing of nonlinear behavior”. Computers and Structures, 81, 2659-2671, 2003.
  • [9] Asik MZ, Tezcan SA. “Mathematical model for the behavior of laminated glass beams”. Computers and Structures, 83(21-22), 1742-1753, 2005.
  • [10] Asik MZ, Dural E, Yetmez M, Uzhan T. “A mathematical model for the behavior of laminated uniformly curved glass beams”. Composites Part B: Engineering, 58, 593-604, 2014.
  • [11] Schimmels SA, Palazotto AN. “Nonlinear geometric and material behavior of shell structures with large strains”. Journal of Engineering Mechanics, 120(2), 320-345, 1994.
  • [12] Sabir AB, Lock AC. “A curved cylindrical shell finite element”. International Journal of Mechanical Sciences, 14, 125, 1972.
  • [13] Ashwell DG, Sabir AB. “A new cylindrical shell finite element based on simple independent strain functions”. International Journal of Mechanical Sciences, 14, 171-183, 1972.
  • [14] Hughes JRT, Liu WK. “Nonlinear finite element analysis of shells: Part I. three dimensional shells”. Computer Methods in Applied Mechanics and Engineering, 26(3), 331-362, 1981.
  • [15] Kuo-Mo H. “Nonlinear Analysis of general shell structures by flat triangular shell element”. Computers and Structures, 25(5), 665-675, 1987.
  • [16] Dural E. Analysis of Laminated Glass Arches and Cylindrical Shells. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2011.