Çimento esaslı kompozitlerde karma lif kullanımı

İnşaat sektöründeki gelişmelerle birlikte çok yüksek katlı betonarme binaların yaygınlaşması, altyapıya verilen önemin artması, nükleer enerji alanındaki yatırımların söz konusu olması gibi gelişmelerden dolayı beton teknolojisinde lif kullanımı büyük bir önem kazanmıştır. Dolayısıyla, bu lif takviyeli kompozitin özellikle, süneklik özelliğine sahip olması gerektiği açıktır. Lif takviyeli kompozitler yapısal elemanların sünekliğini arttırarak, deprem, roket darbeleri ve patlamalar gibi aşırı deplasman oluşturan olayları esnasında büyük miktarda enerji yutarak ileri düzeyde yapısal göçmeyi engellemek için tasarlanmaktadır. Bu kompozitlerin inşaat sektöründe kullanılmasıyla birlikte, çok yüksek betonarme binaların inşa edilebilmesi, önemli altyapı elemanlarının dayanıklılığının ve ekonomik ömrünün arttırılabilmesi, nükleer enerji santrallerinin güvenliği açısından büyük önem arz eden korunak binalarının daha güvenli yapılabilmesi, betonarme taşıyıcı elemanların kesit ve donatı oranlarında azalmalara gidilebilmesi çok daha mümkün olabilmektedir. Bu bağlamda, beton teknolojisinde yukarıda belirtilen kompozit özelliklerinin sağlanması açısından lif kullanımının önemi artmaktadır. Değişik malzeme özelliklerine sahip lif türlerinin tek veya farklı lif kombinasyonlarıyla birlikte karma olarak kullanımıyla daha gelişmiş kompozitler üretmenin mümkün olduğu yapılan incelemeler sonucunda tespit edilmiştir. Bu makalede, çimento esaslı kompozit üretiminde lif kullanımının önemi, lif tipleri ve kullanım şekilleri (tek lif ve karma lif) ve makro ve mikro lif türlerinin karma lif takviyeli kompozitlerin mühendislik özellikleri üzerine etkileri araştırılmıştır. Sonuçta, çoklu çatlak oluşumu ve yüksek çekme dayanımı gibi avantajları nedeniyle inşaat sektöründe karma lif takviyeli kompozit kullanımı büyük önem kazanmaktadır.

The use of hybrid in cementitious composites

With the developments in the construction sector, the use of fiber in concrete technology has gained great importance due to the developments of the spread of high rise concrete buildings, the increasing importance given to infrastructure, investments in nuclear energy field. Therefore, it is clear that this fiber reinforced composite especially should have also ductility properties. Fiber reinforced composites are designed in order to prevent extremely structural collapse by absorbing massive amount of energy during extreme load-displacement events such as earthquakes, projectile impacts and explosions. It will be much more possible with using this composite in the construction sector to construct much higher concrete building, increase the economic life and strength of important infrastructure members, construct more secure containment buildings which is important for the safety of nuclear power plant, reduce the section and reinforcement ratios in reinforced concrete structural members. In this regard, in the concrete technology in order to provide the above mentioned composite properties, the significance of fiber usage has increased. It was found from studies made that it is possible to produce more developed composites using hybrid fiber having different properties with single or different fiber combinations. In this paper, the significance of the use of fiber for producing the cementitious composite, fiber types and the using forms (single or hybrid) and the effects of micro and macro fiber types on the engineering properties of the hybrid fiber reinforced composites are investigated. Finally, at construction sector the use of hybrid reinforced composites has gained great importance due to the formation of multiple crack and high tensile strength.

___

  • Hannant DJ. Fiber Cements and Fiber Concrete. Chichester, UK, Wiley, 1987.
  • Bentur A. Fiber-reinforced cementitious materials. Editors: Skalny JP. Material Science of Concrete, 223-285, Westerville, Ohio, The American Ceramic Society, 1989.
  • Li VC. “From micromechanics to structural engineering – the design of cementitious composites for civil engineering applications”. Japan Society of Civil Engineering Journal of Structural Mechanical Earthquake Enginnering, 10(2), 37-48, 1993.
  • Kanda T, Li VC. “A new micromechanics design theory for pseudo strain-hardening cementitious composite”. American Society of Civil Engineers Journal of Engineering Mechanics, 124(4), 373-381, 1999.
  • Li VC. Engineered Cementitious Composites (ECC)- Tailored Composites through Micromechanical Modeling. Editors: Banthia N, Bentur A, Mufti A. Fiber reinforced concrete: present and the future, 64-97, Montreal: Canadian Society for Civil Engineering, 1998.
  • Sahmaran M, Li M, Li VC. “Transport properties of engineered cementitious composites under chloride exposure”. ACI Materials Journal, 104(6), 604-611, 2007.
  • Metaxa ZS, Konsta-Gdoutos MS, Shah SP. “Crack Free Concrete Made with Nanofiber Reinforcement”. Robert R. McCormick School of Engineering and Applied Science, Year 3 Final Report, 115-124, 2011.
  • Li M, Li VC. “High-Early-Strength engineered cementitious composites for fast, durable concrete repair-material properties”. ACI Materials Journal, 108(1), 3-12, 2011.
  • Ding YN, You Z, Jalali S. “Hybrid fiber influence on strength and toughness of RC beams”. Composite Structures, 92(9), 2083-2089, 2010.
  • Issa M, Metwally I, Elzeiny SM. “Influence of fbers on fexural behavior and ductility of concrete beams reinforced with GFRP rebars”. Engineering Structures, 33(5), 1754-1763, 2011.
  • Ganesan N, Indira PV, Sabeena MV. “Behaviour of hybrid fibre reinforced concrete beam-column joints under reverse cyclic loads”. Materials Design, 54, 686-693, 2014.
  • Caggiano A, Cremona M, Faella C, Lima C, Martinelli E. “Fracture behavior of concrete beams reinforced with mixed long/short steel fibers”. Construction and Building Materials, 37, 832-840, 2012.
  • Dazio A, Buzzini D, Trüb M. “Nonlinear cyclic behavior of hybrid fiber concrete structural walls”. Engineering Structures, 30, 3141–50, 2008.
  • Sukontasukkul P, Jamsawang P. “Use of steel and polypropylene fibers to improve flexural performance of deep soil–cement column”. Construction and Building Materials, 29, 201-215, 2012.
  • Rossi P, Acker P, Malier Y. “Effect of steel fibres at two different stages: the material and the structure”. Materials and Structures, 20(6), 436-439, 1987.
  • Mobasher B, Li Cheng Y. “Mechanical properties of hybrid cement based composites”. American Concrete Institute Materials Journal, 93(3), 284-92, 1996.
  • Akcay B. “Experimental investigation on uniaxial tensile strength of hybrid fibre concrete”. Composites: Part B, 43, 766-78, 2012.
  • Banthia N, Sappakittipakorn M. “Toughness enhancement in steel fiber reinforced concrete through fiber hybridization”. Cement and Concrete Research, 37, 1366–72, 2007.
  • Banthia N, Gupta R. “Hybrid fibre reinforced concrete (hyfrc): fibre synergy in high strength matrices”. Mater Struct, 37(10), 707-716, 2004.
  • Pons G, Mouret M, Alcantara M, Granju JL. “Mechanical behaviour of self-compacting concrete with hybrid fibre reinforcement”. Materials and Structures, 40(2), 201-210, 2007.
  • Markovic I, Walraven JC, Van Mier JGM. “Development of high performance hybrid fiber”. 4th International conference on high performance fiber reinforced cement composites (HPFRCC 4), France, 2003.
  • Stähli P, Van Mier JGM. “Three-fibre-type hybrid fibre concrete”. 5th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Vail, Colorado, USA, 2004.
  • Zhao H. Experimental and theoretical research on seismic performance of concrete frame with special-shaped columns reinforced with polypropylene fiber. Tianjin University, Tianjin, 2008.
  • Laura I, Patrick P, Rami E, Jean P. “Seismic behavior of synthetic fiber-reinforced circular columns”. ACI Materials Journal, 111(1), 189-200, 2014.
  • Wang ZF. “A preliminary report on the great wenchuan earthquake”. Earthquake Eng Eng Vibr, 7, 225-234, 2008.
  • California Department of Transportation Division of Structures. “The Northridge earthquake”. Post Earthquake Investigation Report, 1994.
  • Gu DS, Wu YF, Wu G, Wu ZS. “Plastic hinge analysis of FRP confined circular concrete columns”. Constructions and Building Materials, 27(1), 223-233, 2012.
  • Barrera A, Bonet J, Romero M, Miguel P. “Experimental tests of slender reinforced concrete columns under combined axial load and lateral force”. Engineering Structures, 33, 3676–89, 2011.
  • Paulay T, Priestley M. Seismic Design of Reinforced Concrete and Masonry Buildings. New York, USA, John Wiley & Sons Inc, 1992.
  • ACI 318-05, Building Code Requirements for Reinforced Concrete and Commentary, American Concrete Institute, America, 2005.
  • Huang L, Xu L, Chi Y, Xu H. “Experimental investigation on the seismic performance of steel polypropylene hybrid fiber reinforced concrete columns”. Construction and Building Materials, 87, 16-27, 2015.
  • Bentur A, Mindess S. Fiber Reinforced Cementitious Composites. 2nd ed. New York, USA, Taylor and Francis, 2007.
  • Balaguru PN, Shah SP. Fiber Reinforced Cement Composites. 1st ed. New York, USA, McGraw-Hill Inc., 1992.
  • Bentur A, Mindess S. Fiber Reinforced Cementitious Composites. 1st ed. London and New York, Elsevier Applied Science, 1990.
  • Nawy EG. Fundamentals of High-Performance Concrete. 2nd ed. New York, USA, John Wiley & Sons Inc., 2001.
  • Johnston CD. Fiber-Reinforced Cements and Composites. 3rd ed. Amsterdam, Holland, Gordon and Breach Science Publishers, 2001.
  • Ersoy HY. Kompozit Malzeme. İstanbul, Türkiye, Literatür Yayınları, 2001.
  • Arısoy B. “Lifli hafif betonların optimum karışım tasarımı”. Deprem Sempozyumu, Kocaeli, Türkiye, 23-25 Mart 2005.
  • Kurt G. Lif İçeriği ve Su-Çimento Oranının GRC’nin Mekanik Davranışına Etkileri. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2006.
  • Horikoshi T, Ogawa A, Saito T, Hoshiro H. “Properties of polyvinylalcohol fiber as reinforcing materials for cementitious composites”. International Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications, Honolulu, HI, USA, 2005.
  • Kawamata A, Mihashi H, Fukuyama H. “Properties of hybrid fiber reinforced cement based composites”. Journal of Advanced Concrete Technology, 1(3), 283-290, 2003.
  • Lawler J, Zampini D, Shah S. “Microfiber and macrofiber hybrid fiber-reinforced concrete”. Journal of Materials in Civil Engineering, 17(5), 595-604, 2005.
  • Maalej M, Quek ST, Zhang J. “Behaviour of hybrid-fiber engineered cemetitious composites subjected to dynamic tensile loading and projectile ımpact". Journal of Materials in Civil Engineering ASCE, 17(2), 143-152, 2005.
  • Zhang MH, Sharif MSH, Lu G. “Impact resistance of high-strength fiber reinforced concrete”. Magazine of Concrete Research, 59(3), 199–210, 2007.
  • Walton PL, Majumdar AJ. “Cement-Based composites with mixtures of different types of fiber”. Composites, 6(5), 209-216, 1975.
  • Holschemacher K, Mueller T, Ribakov Y. “Effect of steel fibres on mechanical properties of high-strength concrete”. Materials and Design, 31(5), 2604-2615, 2010.
  • Yan ZG, Zhu HH, Ju JW. “Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures”. Construction and Building Materials, 38, 610–618, 2013.
  • Cheng F, Kodur V, Wang T. “Stress-Strain for high strength concrete at elevated temperatures”. Journal of Materials in Civil Engineering, 16(1), 84-90, 2004.
  • Şahmaran M, Yaman İÖ. ”Hybrid fiber reinforced self compacting concrete with a high-volume coarse fly ash“. Journal of Construction and Building Materials, 27(1), 150-156, 2007.
  • Bentur A, Mindess S. Fibre Reinforced Cementitious Composites. Technology & Engineering. 2nd ed. UK, Taylor & Francis, 2006.
  • Banthia N, Soleimani SM. “Flexural response of hybrid fiber-reinforced cementitious composites”. ACI Materials Journal, 102(6), 382-389, 2005.
  • Blunt JD, Ostertag CP. “Deflection hardening and workability of hybrid fiber composites”. ACI Materials Journal, 106(3), 265-72, 2009b.
  • Banthia N, Nandakumar N. “Crack growth resistance of hybrid fiber reinforced cement composites”. Cement and Concrete Composites, 25(1), 3-9, 2003.
  • Mindess S. “Thirty years of fibre reinforced concrete research at the UWM British, Colombia”. The international conference sustainable construction materials and technologies, 2007.
  • Xu G, Magnani S, Hannant DJ. “Durability of hybrid polypropylene-glass fiber cement corrugated sheets”. Cement and Concrete Composites, 20(1), 79-84, 1998.
  • Lawler JS, Wilhelm T, Zampini D, Shah SP. “Fracture processes of hybrid fiber-reinforced mortar”. Materials and Structures, 36, 197-208, 2003.
  • Betterman LR, Ouyang C, Shah SP. “Fiber-Matrix ınteraction in microfiber-reinforced mortar”. Advanced Cement Based Materials, 2(2), 53-61, 1995.
  • Yap SP, Bu CH, Alengaram UJ, Mo KH, Jumaat MZ. “Flexural toughness characteristics of steel-polypropylene hybrid fibre-reinforced oil palm shell concrete”. Materials & Design, 57, 652-659, 2014.
  • Wang F, Liu Y. “Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber”. Materials & Design, 57, 449-455, 2014.
  • Rambo DAS, Silva FDA, Filho RDT. “Mechanical behavior of hybrid steel-fiber self-consolidating concrete: materials and structural aspects”. Materials & Design, 54, 32-42, 2014.
  • Blunt J, Ostertag CP. “Performance based approach for the design of a deflection hardened hybrid fiber-reinforced concrete”. Journal of Engineering Mechanics ASCE, 135(9), 978-986, 2009.
  • Markovich I, Van Mier JGM, Walraven JC. “Single fiber pullout from hybrid fiber reinforced concrete”. Heron, 46(3), 191-200, 2001.
  • Li VC, Maalej M. “Toughening in cement based composites. Part I: Cement, mortar and concrete”. Cement and Concrete Composites, 18(4), 223-237, 1996.
  • Naaman AE, Wongtanakitcharoen T, Hauser G. “Influence of different fibers on plastic shrinkage cracking of concrete”. ACI Materials Journal, 102(1), 49-58, 2005.
  • Banthia N, Gupta R. “Repairing with fiber-reinforced concrete”. Concrete International, 28(11), 36-39, 2006.
  • Yi CK, Ostertag CP. “Mechanical approach in mitigating alkali-silica reaction”. Cement and Concrete Research, 35(1), 67-75, 2005.
  • Grubb JA, Blunt J, Ostertag CP, Divine TM. “Effect of steel microfibers on corrosion of steel reinforcing bars”. Cement and Concrete Research, 37(7), 1115-1126, 2007.
  • Chung DDL. “Cement reinforced with short carbon fibers: a multifunctional material”. Composites Part B: Engineering, 31(6-7), 511-526, 2005.
  • Lawler JS. Hybrid Fiber Reinforcement in Mortar and Concrete. PhD Thesis, Northwestern University, Evanston, Illinois, USA, 2001.
  • Feldman D, Zheng Z. Synthetic fibers for fiber concrete composites. Editor: Ronald K. Eby, et al, High Performance Polymers and Polymer Matrix Composites, 123–128, Pittsburgh, Materials Research Society, 1993.
  • Qian CX, Stroeven P. “Development of hybrid polypropylene-steel fibre-reinforced concrete”. Cement and Concrete Research, 30(1), 63-69, 2000.
  • Ostertag CP. “Damage resistance of reinforced concrete structures that utilize High Performance Hybrid Fibre Reinforced (HYFRC) Composites”. 2nd International RILEM conference on strain hardening cementitious composites (SHCC2-Rio), 2011.
  • Lawler J, Zampini D, Shah S. “Permeability of cracked hybrid fiber-reinforced mortar under load”. ACI Materials Journal, 99(4), 379-385, 2002.
  • Ahmed SFU, Maalej M, Paramasivam P. “Flexural responses of hybrid steel– polyethylene fibre reinforced cement composites containing high volume fly ash”. Constr Build Mater, 21(5), 1088-1097, 2007.
  • Ahmed SFU, Maalej M. “Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites”. Construction and Building Materials, 23(1), 96-106, 2009.
  • Yun HD, Rokugo K. “Freeze-Thaw influence on the flexural properties of ductile fibre-reinforced cementitious composites (DFRCCs) for durable ınfrastructures”. Cold Regions Science and Technology, 78, 82-88, 2012.
  • Dawood ET, Ramli M. “Durability of high strength flowing concrete with hybrid fibres”. Construction and Building Materials, 35, 521–530, 2012.
  • Suhaendi LS, Horiguchi T. “Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition”. Cement and Concrete Research, 36(9), 1672–1678, 2006.
  • Bangi MR, Horiguchi T. “Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures”. Cement and Concrete Research, 41(11), 1150-1156, 2011.
  • Pliya P, Beaucour AL, Noumowé A. “Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature”. Construction and Building Materials, 25(4), 1926-1934, 2011.
  • Zeiml M, Leithner D, Lackner R, Herbert AM. “How do Polypropylene Fibers Improve the Spalling Behavior of in-situ Concrete?”. Cement and Concrete Research, 36(5), 929-942, 2006.
  • Kalifa P, Chéné G, Gallé C. “High-Temperature behaviour of hpc with polypropylene fibres: from spalling to microstructure”. Cement and Concrete Research, 31(10), 1487-1499, 2001.
  • Rodrigues JPC, Laím L, Correia AM. “Behaviour of fiber reinforced concrete columns in fire”. Composite Structures, 92(5), 1263-1268, 2010.