Comparison of metaheuristics on multi objective (cost&C02)optimization of RCcantilever retaining walls

Bu çalışmada, meta-sezgisel optimizasyon yöntemlerinin betonarme konsol istinat duvarlarının minimum maliyet ve CO2 salınımına göre optimum tasarımı problemindeki performansları araştırılmıştır. Araştırma için, biyo-coğrafya tabanlı ve sosyal örümcek optimizasyon algoritmaları kullanılmıştır. Minimum maliyet fonksiyonu, minimum karbondioksit karbondioksitin salınımını içeren çok amaçlı fonksiyon optimizasyon probleminin amaç fonksiyonları olarak tanımlanmıştır. Optimizasyon probleminde on üç adet tasarım değişkeni tanımlanmıştır. Bunlardan sekiz tanesi istinat duvarının en kesitini oluşturan değişkenlerdir. Diğer beş tanesi ise duvar elemanların donatı detaylandırmasıdır. Eğilme ve kesme kapasite sınırlayıcıları, minimum ve maksimum donatı alanları, donatı detaylandırılmasında gerekli donatı uzunlukları ve göçme modların güvenlik katsayıları optimizasyon probleminin tasarım sınırlayıcıları olarak tanımlanmıştır. Eğilme ve kesme kapasitesi sınırlayıcıları ve donatı alanlarının minimum ve maksimum sınır değerleri Amerikan beton enstitüsü tasarım şartnamesinden alınmıştır. Sunulan optimizasyon yöntemlerinin performanslarını test etmek için literatürdeki tasarım örnekleri kullanılmıştır. Buna ek olarak farklı beton ve çelik malzemeleri kullanılarak malzeme sınıflarının optimum CO2 salınımı ve maliyeti üzerindeki etkinliği araştırılmıştır

Betonarme konsol istinat duvarların çok amaçlı(maliyet ve karbondioksit) optimizasyonunda meta-sezgisel yöntemlerin karşılaştırılması

In this study, performance of meta-heuristic methods on optimum design of reinforced concrete (RC) retaining wall has been investigated with respect to minimizing the cost and the CO2 emission. Biogeography Based Optimization (BBO) and Social Spiders optimization (SSO) methods utilized for investigation. The minimizations of the cost, the CO2 emission and multi-objective of the cost+CO2 functions are described as objective functions of the optimization problem. There are thirteen design variables are defined in the optimization problem. Eight of these variables are the cross sectional dimensions of the retaining wall. The other five design variables are the reinforcement detailing of wall members. Flexural and shear strength requirements, minimum and maximum cross section areas of the reinforcement bar, the requirement length for reinforcement details and the factor of safety for failure modes are defined as constraints functions of the optimization problem. The Flexural and shear strength requirements, minimum and maximum limitations of the reinforcement bar areas are adopted from American Concrete Institute design code. In order to test performance of the presented optimization methods literature design examples are used. In addition, efficiency of steel and concrete classes on optimum CO2 emission and cost have been investigated by using different steel and concrete classes.

___

  • [1]Simon D. "Biogeography-Based optimization". IEEE Transactions on Evolutionary Computation, 12(6), 702-713, 2008.
  • [2]Bhattacharya A, Chattopadhyay PK. "Economic dispatch solution using biogeography-based optimization". Annual IEEE India Conference, Ahmedabad, India,18-20 December2009.
  • [3]Rarick R, Simon D, Villaseca FE, Vyakaranam B. "Biogeography-Based Optimization and the Solution of the Power Flow Problem". 2009 IEEE International Conference on Systems Manand Cybernetics, San Antonio/Texas, USA,11-14 October 2009.
  • [4]Ashrafinia S, Pareek U, Naeem M, Lee D. "Source and Relay Power Selection Using Biogeography-Based Optimization for Cognitive Radio Systems". Proc. 2011 IEEE Vehicular Technology Conference, San Francisco/California, USA, 05-08 September 2011.
  • [5]Daoudi M, Boukra A, Ahmed-Nacer M. Security Audit Trail Analysis with Biogeography Based Optimization Metaheuristic. Editors: Azizah AM, Akram Z, Mazdak Z, Suriayati C, Eyas EQ.Informatics Engineering and Information Science,218-227, Berlin, Germany, Springer, 2011.
  • [6]Gupta S, Arora A, Panchal VK, Goel S.Extended biogeography based optimization for natural terrain feature classification from satellite remote sensing images. Editors: Srinivas A, Sanghamitra B, CatalyurekUV,DubhashiDP, JonesPH, h ParasharM, SchmidtB. Contemporary ComputingIC3, 262-269, Berlin, Germany, Springer,2011.
  • [7]Roy PK, Ghoshal SP, Thakur SS. "Optimal reactive power dispatch considering flexibleAC transmission system devices using biogeography-based optimization". Electric Power Components and Systems, 39(8), 733-750, 2011.
  • [8]Chatterjee A, Siarry P, Nakib A, Blanc R. "An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy". Engineering Applications of Artificial Intelligence, 25(8), 1698-1709, 2012.
  • [9]Jain P, Agarwal A, Gupta N, Shar-ma R, Paliwal U, Bhakar R, "Profit maximization of a generation company based on biogeography based optimization". Power and Energy Society General MeetingConfrence, San Diego/California, USA, 22-26 July 2012
  • .[10]Rahmati SHA, Zandieh M. "A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem". International Journal of Advanced Manufacturing Technology, 58(9-12), 1115-1129, 2012.
  • [11]Gupta D, Goel L, Aggarwal V. "A Hybrid Biogeography Based Heuristic for the Mirrored Traveling Tournament Problem"Sixth International Conference on Contemporary Computing (IC3),Noida, India, 8-10 August 2013.
  • [12]Cuevas E, Cienfuegos M, Zaldivar D, Perez-Cisneros M. "A swarm optimization algorithm inspired in the behavior of the social-spider". Expert Systems with Applications,40 (16), 6374-6384, 2013.
  • [13]Esapour K, Hoseinzadeh R, Akbari-Zadeh MR, Zare J. "A new sufficent method based on levy-social spider technique for optimal economic dispatch of thermal power unit". Journalof IntelligentFuzzy Systems,28(3), 1137-1143 2015.
  • [14]Kavousi-Fard A, Abbasi A, Rostami MA, Khosravi A. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs". Energy,93, 1693-1703,2015.
  • [15]Khorramnia R, Akbarizadeh MR, Jahromi MK, Khorrami SK, Kavusifard F. "A new unscented transform for considering wind turbine uncertainty in ED problem based on SSO algorithm". Journal ofIntelligentFuzzy Systems, 29(4), 1479-1491, 2015.
  • [16]Mirjalili SZ, Saremi S, Mirjalili SM. "Designing evolutionary feedforward neural networks using social spider optimization algorithm". Neural Computing & Applications26(8), 1919-1928, 2015.
  • [17]Pereira DR, Delpiano J, Papa JP "On the optical flow model selection through metaheuristics". Eurasip Journalon Image and Video, 49, 25-38, 2015.
  • [18]Hameed WI, Kadhim AS, Al-Thuwaynee AAK. "Field weakening controlof a separately excited dc motor using neural network optimized by social spider algorithm". Engineering, 8(1), 1-10, 2016.
  • [19]Pereira DR, Pazoti MA, Pereira LA, Rodrigues D, Ramos CO, Souza AN, Papa JP. "Social-Spider optimization-based support vector machines applied for energy theft detection". Computers &ElectricalEngineering, 49, 25-38, 2016.
  • [20]Saribas A, Erbatur F. "Optimization and sensitivity of retaining structures". Journal of Geotechnical Engineering-ASCE, 122(8), 649-656, 1996.
  • [21]Yepes V, Alcala J, Perea C, González-Vidosa F. "A parametric study of optimum earth-retaining walls by simulated annealing".Engineering Structures, 30(3), 821-830, 2008.
  • [22]Zevgolis IE, Bourdeau PL. "Probabilistic analysis of retaining walls". Computers and Geotechnics, 37(3), 359-373, 2010.
  • [23]Kaveh A, Abadi ASM. "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls". International Journal of Civil Engineering, 9(1), 1-8, 2011.
  • [24]Camp CV, Akin A. "Design of Retaining Walls Using Big Bang-Big Crunch Optimization". Journal of Structural Engineering-ASCE, 138(3), 438-448, 2012.
  • [25]KavehA, Kalateh-Ahani M, Fahimi-Farzam, M. "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm".Structural Engineering and Mechanics, 47(2), 227-245, 2013.
  • [26]Khajehzadeh M, Taha MR, Eslami M. "Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm". Civil Engineering and Environmental Systems, 31(3), 229-242, 2014.
  • [27]Khajehzadeh M, Taha MR, El-Shafie A, Eslami M. "Modified particle swarm optimization for optimum design of spread footing and retaining wall".Journal of Zhejiang University-Science A, 12(6), 415-427, 2011.
  • [28]Yepes V, Gonzalez-Vidosa F, Alcala J, Villalba P. "CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy".Journal of Computing in Civil Engineering, 26(3), 378-386, 2012.
  • [29]Paya-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F. "CO2-optimization of reinforced concrete frames by simulated annealing". Engineering Structures, 31(7), 1501-1508, 2009.
  • [30]Zhang P, Zhu H, Fafitis A. "Analyses of high grade strength steel bars in the design of a five-storey reinforced concrete structure with comparison of energy consumptionand CO2emission".Advanced Materials Research,511, 64-69, 2012.
  • [31]Camp C.V, and Assadollahi . "CO2and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm". Structural and Multidisciplinary Optimization, 48(2), 411-426, 2013.
  • [32]Camp CV, Huq F. "CO2and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm". Engineering Structures, 48, 363-372, 2013.
  • [33]Park HS., Kwon B, Shin Y, Kim Y, Hong T, Choi SW. "Cost and CO2emission optimization of steel reinforced concrete columns in high-rise buildings".Energies, 6(11), 5609-5624, 2013.
  • [34]de Medeiros GF, Kripka M. "Optimization of reinforced concrete columns according to different environmental impact assessment parameters". Engineering Structures, 59, 185-194, 2014.
  • [35]Lanikova I, Stepanek P, Simunek P. "Optimized Design of Concrete Structures Considering Environmental Aspects," Advances in Structural Engineering, 17(4), 495-511, 2014.
  • [36]Park HS, LeeH, Kim Y,HongT, ChoiSW."Evaluation of the influence of design factors on the CO2emissions and costs of reinforced concrete columns".Energy and Buildings, 82, 378-384, 2014.
  • [37]American Concrete Institute."Building Code Requirements for Structural Concrete and Commentary".Farmington Hills, Michigan, 318-14,2014.
  • [38]Simon D, Rarick R, Ergezer M, Du D. "Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms". Information Sciences, 181(7), 1224-1248, 2011.
  • [39]Akin A, Aydogdu I. "Optimum design of retaining walls using adaptive firefly algorithm". International Civil Engineering & Architecture Symposium for Academicians, Antalya, Turkey, 17-20 May 2014.
  • [40]Aydogdu I, Akin A. "Biogeography Based CO2and Cost Optimization of RC Cantilever Retaining Walls". 17thInternational Conference on Structural Engineering, World Academy of Science, Engineering and Technology, Paris, France, 20-21 July2015.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ