Coğrafi Bilgi Sistemleri-mekânsal epidemiyoloji çerçevesinde SARS CoV-2 (COVID-19)

Dünyayı etkisi altına alan şiddetli akut solunum yolu sendromu coronavirusu 2 (SARS-CoV-2) salgını, pek çok ülkede ölümcül sonuçlara neden olan önemli bir halk sağlığı sorunudur. Pandemiye yol açacak hastalık yayılımlarının erken dönemde tespit edilebilmesi hastalık kontrol ve eradikasyonunun önemli bir bileşenidir. Hastalık verilerinin ve mekânsal analiz yöntemlerinin birlikte kullanılması, daha etkili hastalık kontrolü ve çözüm stratejileri geliştirmek için büyük bir fırsat sunmaktadır. Bu derlemede coğrafi bilgi sistemlerinin (CBS) epidemiyolojideki uygulamalarını ve salgın hastalıkların kontrolü ve eradikasyonundaki ilişkisini değerlendirmek için özelde COVID-19’u içeren literatüre dayalı bir inceleme yapılmıştır. Epidemiyoloji alanındaki araştırmalarda, araştırılan hastalık verilerinin nasıl bir dağılım ve kümelenme gösterdiği, kısa, orta ve uzun vadede yapılacak kontrol ve eradikasyon müdahalelerini planlama açısından CBS temelli analizler ve modeller giderek önem kazanmaktadır. COVID-19'un kontrol ve eradikasyonunda yaşanan zorluklar, güçlü bulaşıcılık özelliği, uzun bir kuluçka dönemi, nüfus akış ve hareketliliği ve diğer faktörlerle birleştiğinde, hastalığın yayılmasını kontrol etmek ve önlemek için bilimsel ve teknolojik desteğe gereksinim duyulmaktadır. Bu derlemenin amacı, CBS temelli araçların gelişimini anlamak ve COVID-19 pandemisi yönetiminde CBS kullanımı hakkında güncel bilgiler vermektir.

SARS CoV-2 (COVID-19) in the framework of Geographic Information System spatial epidemiology

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic which has affected all over the world is a major public health concern that causes fatal consequences in many countries. The early detection of disease spread that will cause a pandemic is an important component of disease control and eradication. The combination of disease data and spatial analysis methods provides a great opportunity to develop solution strategies for more effective disease control. In this review, to evaluate the practices of geographic information system (GIS) in epidemiology and its relation in the control and eradication of pandemic, a literature-based review which includes COVID-19 in particular has been made. GIS-based analyses and models are of increasing importance in the epidemiological studies; in terms of how the researched disease data show distribution and clustering, and planning control and eradication interventions in the short, medium, and long terms. Scientific and technological supports are requirement to control and avoid the spread of the disease when the challenges in the control and eradication of COVID-19, features of strong contagiousness, a long incubation period, population flow, and mobility combined with other factors. The aim of this review is to understand the development of GISbased tools and to provide up-to-date information about the use of GIS in COVID-19 pandemic management.

___

  • 1. Siddell SG, Walker PJ, Lefkowitz EJ, et al. Additional changes to taxonomy ratified in a special vote by the international committee on taxonomy of viruses. Arch Virol 2019;164:943-946. https://doi.org/10.1007/ s00705-018-04136-2
  • 2. Gorbalenya A, Baker S, Baric R, et al. The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-544. https://doi.org/10.1038/ s41564-020-0695-z
  • 3. Nieto Torres JL, DeDiego ML, Verdiá Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens 2014;10:e1004077. https://doi.org/10.1371/journal. ppat.1004077
  • 4. Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health 2020;13:667-673. https://doi.org/10.1016/j. jiph.2020.03.019
  • 5. Zhou P, Yang XL, Wang XG, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. Nature 2020;579:270-273. https://doi. org/10.1101/2020.01.22.914952
  • 6. Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci 2020;16:1753-1766. https://doi.org/10.7150/ijbs.45134
  • 7. Luk HK, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol 2019;71:21-30. https:// doi.org/10.1016/j.meegid.2019.03.001
  • 8. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERSCoV): a systematic review and metaanalysis. Int J Infect Dis 2016;49:129-133. https://doi. org/10.1016/j.ijid.2016.06.015
  • 9. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-534. https://doi.org/10.1038/nrmicro.2016.81
  • 10. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020;21:2657. https://doi.org/10.3390/ijms21072657 11. Ministry of Health 2019. Covid 19 Information page. Available at: https://covid19.saglik.gov.tr/. Accessed December 12, 2020
  • 12. Kirby RS, Delmelle E, Eberth JM. Advances in spatial epidemiology and geographic information systems. Ann Epidemiol 2017;27:1-9. https://doi.org/10.1016/j. annepidem.2016.12.001
  • 13. Frerichs RR. History, maps and the internet: UCLA’s John Snow site. Soc Bulletin Available at: https://www. ph.ucla.edu/epi/snow/socbulletin34(2)3_7_2001.pdf. Accessed September 10, 2020
  • 14. Carpenter T. The spatial epidemiologic (r)evolution: a look back in time and forward tothe future. Spat Spatiotemporal Epidemiol 2011;2:119-124. https://doi. org/10.1016/j.sste.2011.07.002
  • 15. Prates MO, Kulldorff M, Assunção RM. Relative risk estimates from spatial and space-time scan statistics: are they biased?. Stat Med 2014;33:2634-2644. https:// doi.org/10.1002/sim.6143
  • 16. Bailey TC. Spatial statistical methods in health. Cad Saude Publica 2001;217:1083-1098. https://doi. org/10.1590/s0102-311x2001000500011
  • 17. Uluğtekin N, Doğru AÖ. Coğrafi bilgi sistemi ve harita: kartografya, Ege CBS Sempozyumu, 27-29 Nisan 2005, İzmir, Erişim adresi: https://web.itu.edu. tr/~dogruahm/Cografi%20Bilgi%20Sistemi%20Ve%20 Harita_Kartografya.pdf. Erişim tarihi 18 Aralık 2020
  • 18. Karabulut E, Alpar R, Özayar E. Hastalıkların yere göre kümelenmesinde kullanılan yöntemler. İnö Üni Tıp Fak Der 2006;13:37-43.
  • 19. Tonini M, Tuia D, Ratle F. Detection of clusters using space–time scan statistics. Int J of Wildland Fire 2009;18:830-836. https://doi.org/10.1071/WF07167
  • 20. Quantum Geographic Information Systems™ (QGIS). QGIS home page. Avaible at: https://www.qgis.org/tr/ site/. Accessed December 07, 2020
  • 21. Anselin L, Nancy LG, Julia K. Rate transformations and smoothing-2006. Technical Report. Urbana, Spatial Analysis Laboratory, Department of Geography, University of Illinois. Avaible at: https://pdfs. semanticscholar.org/88d8/b02de84f97f556cfe0ef5a91 a7df229cf363.pdf. Accessed May 06, 2020
  • 22. Gayır B, Arslan O. Orman yangınlarının CBS tabanlı konumsal istatistik analizi: 2011-2015 yılları arasında Muğla orman bölge sınırları içerisinde çıkan yangınlar. Anadolu Orman Araşt Derg 2018;4:44-60.
  • 23. Kulldorff M. SaTScan™ user guide for version 9.6- 2018. SatscanTM Home Page. Avaible at: https:// www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_ U s e r s _ G u i d e . p d f ? t o d o = p r o c e s s _ u s e r g u i d e _ download. Accessed October 11, 2020
  • 24. Suzuki K, Pereira JAC, López R, et al. Descriptive spatial and spatio-temporal analysis of the 2000–2005 canine rabies endemic in Santa Cruz de la Sierra, Bolivia. Acta Trop 2007;103:157-162. https://doi. org/10.1016/j.actatropica.2007.06.003
  • 25. Waller LA, Gotway CA. Applied spatial statistics for public health data. New Jersey: John Wiley&Sons Publications, 2004;118-155. Available at: https://libgen. is/book/index.php?md5=73DFE52B330F23BBBE58C 3EDAA2E35C7. Accessed April 3, 2020
  • 26. ESRI Company. ArcGIS Available at: https://www.esri. com.tr/tr-tr/urunler/arcgis-for-personal-use. Accessed May 5, 2020
  • 27. R Core Team. The R project for statistical computing. Available at: https://www.r-project.org/. Accessed December 5, 2019
  • 28. Pebesma E. Spacetime: spatio-temporal data in R. J Stat Softw 2012;51:11-30. https://doi.org/10.18637/jss. v051.i07
  • 29. Pebesma E, Graeler B. Gstat package. Available at: https://cran.r-project.org/web/packages/gstat/gstat. pdf. Accessed May 15, 2020
  • 30. Rezaei M, Nouri AA, Park GS, Kim DH. Application of geographic information system in monitoring and detecting the COVID-19 outbreak. Iran J Public Health 2020;49:114-116. https://doi.org/10.18502/ijph. v49iS1.3679
  • 31. Franch Pardo I, Napoletano BM, Rosete Verges F, Billa L. Spatial analysis and GIS in the study of COVID-19. A review. Sci Total Environ 2020;739:140033. https://doi. org/10.1016/j.scitotenv.2020.140033
  • 32. Saha A, Gupta K, Patil M, Urvashi. Monitoring and epidemiological trends of coronavirus disease (COVID-19) around the world. Matrix Sci Med 2020;4:121-126. Available at: https://www. matrixscimed.org/text.asp?2020/4/4/121/297630. Accessed October 12, 2020
  • 33. Baker RE, Yang W, Vecchi GA, Metcalf CE, Grenfell BT. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science 2020;369:315- 319. https://doi.org/10.1126/science.abc2535
  • 34. Xun L, Qinyun L, Marynia K, et al. GeoDaCenter/covid: beta 2020 (Version beta). Zenodo. Avaible at: http://doi. org/10.5281/zenodo.4081869. Accessed September 7, 2020
  • 35. Desjardins MR, Hohl A, Delmelle EM. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: detecting and evaluating emerging clusters. Appl Geogr 2020;118:102202. https://doi.org/10.1016/j.apgeog.2020.10220
  • 36. Tang Y, Wang S. Mathematic modeling of COVI D-19 in the United States. Emerging Microbes Infec 2020;9:827-829. https://doi.org/10.1080/22221751.20 20.1760146
  • 37. Lakhani A. Introducing the percent, number, availability, and capacity (PNAC) spatial approach to identify priority rural areas requiring targeted health support in light of COVID-19: a commentary and application. J Rural Health 2020;37:149-152. https://doi.org/10.1111/ jrh.12436
  • 38. Dagnino R, Weber EJ, Panitz LM. Monitoramento do Coronavirus (Covid-19) nos municípios do Rio Grande do Sul, Brasil. SocArXiv 2020:1-8. https://doi. org/10.31235/osf.io/3uqn5
  • 39. Rex FE, Borges CAS, Käfer PS. Spatial analysis of the COVID-19 distribution pattern in São Paulo State, Brazil. Ciência & Saúde Coletiva 2020;25:3377-3384.
  • 40. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2002032
  • 41. Zhang X, Rao H, Wu Y, Huang Y, Dai H. Comparison of spatiotemporal characteristics of the COVID-19 and SARS outbreaks in mainland China. BMC Infect Dis 2020;20:805. https://doi.org/10.1186/s12879-020- 05537-y
  • 42. Kucharski AJ, Russell TW, Diamond C, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020;20:553-558. https://doi.org/10.1016/S1473- 3099(20)30144-4
  • 43. Tang T, Huipeng L, Gifty M, et al. The changing patter of COVID-19 in China: a tempo-geographic analysis of the SARS-CoV-2 epidemic. Clin Infect Dis 2020;71:818- 824. https://doi.org/10.1093/cid/ciaa423
  • 44. Roy S, Bhunia GS, Shit PK. Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Model Earth Syst Environ 2020:1-7. https://doi. org/10.1007/s40808-020-00890-y
  • 45. Orea L, Álvarez IC, da Silva CHF. How effective has the Spanish lockdown been to battle COVID-19? A spatial analysis of the coronavirus propagation across provinces. Documento de Trabajo 2020;3:1-33.
  • 46. Rossman H, Keshet A, Shilo S, et al. A framework for identifying regional outbreak and spread of COVID-19 from one-minute population-wide surveys. Nat Med 2020;26:634-638. https://doi.org/10.1038/s41591-020- 0857-9
  • 47. Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spatio-temporal spread of Coronavirus Disease 2019 (COVID-19) in Italy. 2020. SSRN Electron J https://doi.org/10.2139/ssrn.3559569
Pamukkale Tıp Dergisi-Cover
  • ISSN: 1309-9833
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Prof.Dr.Eylem Değirmenci
Sayıdaki Diğer Makaleler

Postural hematürinin değerlendirilmesi: posterior nutcracker sendromu

Muhammet Arslan, Belda Dursun, Murat Yaşar Taş

Myocardial performance index is associated with Systematic Coronary Risk Estimation (SCORE) system in chronic coronary syndrome

Hazar HARBALIOĞLU, Ömer GENÇ, Abdullah YILDIRIM

Coğrafi Bilgi Sisitemleri-mekânsal epidemiyoloji çerçevesinde SARS CoV-2 (COVID-19)

Ömer Bariş İNCE, Murat ŞEVİK, Ahmet SAİT

Hemoptizi olan ve hemoptizi olmayan hastaların cerrahi tedavi sonuçları

Hakan KESKİN, Hulya DİROL, Makbule ERGİN

İntrakraniyal anevrizmaların tedavisi için uygulanan endovasküler koil embolizasyonunun manyetik rezonans anjiyografi ile takibi

Murat DÖKDÖK, Kutlay KARAMAN, Selcuk GOCMEN

Surgical management outcomes of tuberculosis with hemoptysis and without hemoptysis

Hakan KESKİN, Hülya DİROL, Makbule ERGİN

Atopik dermatitli hastalarda besin alerjisi sıklığının ve hastalık şiddetinin değerlendirilmesi

Nurşen CİĞERCİ GÜNAYDIN, Şule Güler KAÇMAZ, Özge YERLİOĞLU, Melis Öztürk AYKAÇ, Berk DINLAMAZ, Nedim SAMANCI

İdrar yolu enfeksiyonu geçiren çocuk hastalarda klinik ve laboratuvar kanıtların böbrek hasarı ile ilişkisinin değerlendirilmesi

Selçuk YÜKSEL, Tülay BECERİR, Burçin SEYHAN

Vulvar Kanserli Hastalarda Prognostik Faktörler: Tek Merkez Deneyimi

Gülşah SELVİ DEMİRTAŞ, Fatih DİNÇER, Gökşen GÖRGÜLÜ, Muzaffer SANCI, Sevil SAYHAN

Dilate kardiyomyopatili çocuk hastalarda klinik ve prognostik faktörler

Ayça KOCA YOZGAT, Selmin KARADEMİR