Parabolik Oluk Güneş Kolektörü Isı Transferi Özelliklerinin Alıcı Boruya Kanatçık İlavesi ile İyileştirilmesi

Parabolik oluk güneş kolektörleri güneş enerjisi uygulama alanında oldukça geniş yer tutmaktadır. Düz tip ve vakum tüp kolektörlere göre yüksek odaklanma oranı sayesinde alıcı boru içerisinden geçen ısı transferi akışkanında daha yüksek çıkış sıcaklıkları elde edilebilmekte ve bu yüzden elektrik üretimi vb. yüksek sıcaklık prosesi gerektiren alanlarda kullanılmaktadır. Alıcı boru içerisine kanatçık, türbülatör ilavesi veya alıcı borunun oluklu imal edilmesi ile ısı transferi özelliklerinde ciddi iyileştirmeler elde edilmektedir. Bu çalışmada alıcı boru içerisinde eğrisel kanatçık ilavesi ile akışkana ısı transferi özeliklerinin artışı hesaplamalı akışkanlar dinamiği (HAD) analizi ile incelenmiştir. Analizde kullanılan Reynoldss sayı aralığı 3000 ile 21000 arası olarak belirlenmiştir. Elde edilen sonuçlara göre düz boruya göre altı kanatçıklı boruda Nusselt sayısı en fazla 1,34 kat, oniki kanatçıklı boruda 3,06 kat artış göstermiştir.

Enhancement of Parabolic Trough Solar Collector Heat Transfer Properties by Insert Fins to the Receiver Pipe

Parabolic trough solar collectors occupy a very large place in the field of solar energy application. Thanks to the higher focusing ratio compared to flat type and vacuum tube collectors, higher outlet temperatures can be obtained in the heat transfer fluid passing through the receiver pipe, and therefore electricity generation etc. It is used in areas that require high temperature processing. Significant improvements in heat transfer properties are achieved by adding fins, turbulators, or corrugated receiving pipe into the receiving pipe. In this study, the increase in heat transfer properties to the fluid with the addition of curvilinear fins in the receiver pipe was investigated by computational fluid dynamics (CFD) analysis. The Reynoldss number range used in the analysis was determined as between 3000 and 21000. According to the results obtained, the Nusselt number increased by 1,34 times in the six-finned pipe and 3,06 times in the twelve-finned pipe compared to the straight pipe.

___

  • Akbarzadeh, S., Valipour, M. S. Heat transfer enhancement in parabolic trough collectors: A comprehensive review. Renewable and Sustainable Energy Reviews 2018; 92: 198-218. https://doi.org/10.1016/j.rser.2018.04.093
  • Akbarzadeh, S., Valipour, M. S. The thermo-hydraulic performance of a parabolic trough collector with helically corrugated tube. Sustainable Energy Technologies and Assessments 2021; 44: 101013. https://doi.org/10.1016/j.seta.2021.101013
  • Al-Rashed A.A.A.A., Alnaqi Abdulwahab A., Alsarraf J., Thermo-hydraulic and economic performance of a parabolic trough solar collector equipped with finned rod turbulator and filled with oil-based hybrid nanofluid. Journal of the Taiwan Institute of Chemical Engineers, Article in press 2021;1-13, https://doi.org/10.1016/j.jtice.2021.04.026
  • Bahiraei, M., Gharagozloo, K., Moayedi, H. Experimental study on effect of employing twisted conical strip inserts on thermohydraulic performance considering geometrical parameters. International Journal of Thermal Sciences 2020; 149:106178. https://doi.org/10.1016/j.ijthermalsci.2019.106178
  • Bellos, E., Tzivanidis, C., Antonopoulos, K.A., Gkinis, G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy 2016; 94: 213-222. https://doi.org/10.1016/j.renene.2016.03.062
  • Bellos, E., Tzivanidis, C., Tsimpoukis, D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renewable and Sustainable Energy Reviews 2018; 91: 358-375. https://doi.org/10.1016/j.rser.2018.03.091
  • Chang, C., Sciacovelli, A., Wu, Z., Li , X., Li , Y., Zhao , M., Deng, J., Wang , Z., Ding, Y. Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid. Applied Energy 2018; 22: 337-350. https://doi.org/10.1016/j.apenergy.2018.03.091
  • Chekifı, T., Boukraa, M. Thermal efciency enhancement of parabolic trough collectors: a review. Journal of Thermal Analysis and Calorimetry, Article in Press, 2022; https://doi.org/10.1007/s10973-022-11369-6
  • Ercoşkun, G. T., Keskin, A., Gürü, M., Altıparmak, D. Çift Oluklu Parabolik Oluk Tipi Güneş Kollektörünün Tasarımı, İmalatı ve Performansının İncelenmesi. Journal of the Faculty of Engineering and Arcitecture of Gazi University 2013; Vol 28: 855-863.
  • Feizabadia, A., Khoshvaght-Aliabadib, M., Rahimia, A. B. Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts. International Journal of Thermal Sciences 2019; 145: 106051. https://doi.org/10.1016/j.ijthermalsci.2019.106051
  • Ghadirijafarbeiglooa, Sh., Zamzamianb, A. H., Yaghoubic, M. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia 2014; 49: 373-380. https://doi.org/10.1016/j.egypro.2014.03.040
  • Ghasemi, S. E., Ranjbar, A. A., Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Applied Thermal Engineering 2017; 118: 807-816. https://doi.org/10.1016/j.applthermaleng.2017.03.021
  • Jebasingh, V.K., Herbert , G.M. J. A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews 2016; 54: 1085-1091. https://doi.org/10.1016/j.rser.2015.10.043
  • Kalogirou, S. A., A detailed thermal model of a parabolic trough collector receiver. Energy 2012, 48: 298-306. https://doi.org/10.1016/j.energy.2012.06.023
  • Kurşun, B. Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes. Renewable Energy 2019; 140: 816-827. https://doi.org/10.1016/j.renene.2019.03.106
  • Liu, P., Lv, J., Shan, F., Liu, Z., Liu, W. Effects of rib arrangements on the performance of a parabolic trough receiver with ribbed absorber tube. Applied Thermal Engineering 2019; 156: 1-13. https://doi.org/10.1016/j.applthermaleng.2019.04.037
  • Liu, P., Zheng, N., Liu, Z., Liu, W. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Conversion and Management 2019; 179: 30-45. https://doi.org/10.1016/j.enconman.2018.10.057
  • Manikandan, G.K., Iniyan, S., Goic, R. Enhancing the optical and thermal efficiency of a parabolic trough collector – A review. Applied Energy 2019; 235: 1524-154. https://doi.org/10.1016/j.apenergy.2018.11.048
  • Nazir, M.S., Shahsavar, A., Afrand,M.,Arıcı M., Nižetić,S., Ma, Z., Öztop, H.,F. A compherensive review of parabolic tough solar collectors with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technologies and Assessments 2021; 45: 101103. https://doi.org/10.1016/j.seta.2021.101103
  • Qiu, Y., Li, M., He, Y., Tao, W. Thermal performance analysis of a parabolic trough solar collector using supercritical C as heat transfer fluid under non-uniform solar flux. Applied Thermal Engineering 2017;115:1255-1265. https://doi.org/10.1016/j.applthermaleng.2016.09.044
  • Saedodin, S., Zaboli M., Ajarostaghi, S.S.M. Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with Turbulence-Inducing elements. Sustainable Energy Technologies and Assessments 2021; 46: 101266. https://doi.org/10.1016/j.seta.2021.101266
  • Saha, S.K., Bhattacharyya, S., Pal, P. K. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape. Experimental Thermal and Fluid Science 2012; 41: 121-129. https://doi.org/10.1016/j.expthermflusci.2012.04.004
  • Saha, S., Saha, S.K. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes. Experimental Thermal and Fluid Science 2013;47: 81-89. https://doi.org/10.1016/j.expthermflusci.2013.01.003
  • Şahin, H.M., Baysal E., Dal, A.R., Şahin, N. Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems. İnternational Journal of Hydrogen Energy 2015; 40: 15254-15266. https://doi.org/10.1016/j.ijhydene.2015.03.009
  • Rashidi, S., Zade, N. M., Esfahani, J. A. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chemical Engineering & Processing: Process Intensification 2017; 117: 27-37. https://doi.org/10.1016/j.cep.2017.03.013
  • Varun, K., Arunachala ,U.C., Elton, D.N. Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector. Renewable Energy 2020; 156: 478-492. https://doi.org/10.1016/j.renene.2020.04.093
  • Xiangtao, G., Fuqiang, W., Haiyan, W., Jianyu, T., Qingzhi, L., Huaizhi, H. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Solar Energy 2017; 144:185-202. https://doi.org/10.1016/j.solener.2017.01.020
  • Yılmaz, İ. H., Mwesigye, A., Göksu, T. T. Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts. Sustainable Energy Technologies and Assessments 2020; 39: 100696. https://doi.org/10.1016/j.seta.2020.100696