Mullit Takviyeli CeO2 Katkılı ZrO2 Seramiklerinin İmalatı ve Karakterizasyonu

Bu çalışmada, mullit (3Al2O3.2SiO2) ve %10 mol serya katkılı zirkonya (%10 mol CeO2 - %90 mol ZrO2) seramik tozları geleneksel seramik üretim yöntemi ile sentezlenmiştir. Karışımlar, zirkonya bilyalı değirmende aseton ortamında mekanik alaşımlama yöntemiyle hazırlanmıştır. Mullit ve serya katkılı zirkonya seramik tozları sırasıyla 1600 oC'de 3 saat ve 1300 oC'de 2 saat sentezlenmiştir. Sonra, seramik fazlar kırma, öğütme ve eleme işlemleri ile seramik - seramik kompozitleri oluşturmaya hazır hale getirilmiştir. Daha sonra ağırlıkça %0 ve %10 mullit takviyeli serya katkılı zirkonya karışımları toz metalurjisi yöntemiyle hazırlanmıştır. Hazırlanan karışımlar zirkonya bilyalı değirmende 24 saat yaş öğütülmüş ve elenmiştir. Kurutulduktan sonra, tozlar tek eksenli presleme ve 200 MPa ile sıkıştırılmıştır. Devamında, yüksek sıcaklıklı bir fırında hava koşullarında 5 oC/dak ısıtma oranıyla 1500-1600 oC'de 1-5 saat sinterlenmiştir. Daha sonra seramik kompozitler üzerinde mikroyapı (SEM), faz analizi (XRD), mekanik (sertlik, 3 nokta eğme ve aşınma) ve fiziksel özellikler (% küçülme, su emme, gözeneklilik ve yoğunluk) testleri yapılmıştır. Bu çalışmada, yüksek sinterleme sıcaklıklarında ZrO2 – CeO2 karışımında faz değişimi olup olmadığı ve mullit katkı maddesinin bu karışımın özelliklerine etkisi araştırılmıştır.

Fabrication and Characterization of Mullite Reinforced CeO2 Added ZrO2 Ceramics

In this study, mullite (3Al2O3.2SiO2) and 10 mol % ceria added zirconia (10 mol % CeO2 - 90 mol % ZrO2) ceramic powders were synthesized by conventional ceramic production processing route. The mixtures were prepared by mechanical alloying method in acetone environment with zirconia ball mill. Mullite and ceria added zirconia ceramic powders were synthesized in air at 1600 oC for 3 h and 1300 oC for 2 h, respectively. Then, the ceramic phases formed were made ready to form ceramic - ceramic composites by crushing, grinding and sieving processes. Then 0 and 10% by weight mullite added ceria doped zirconia mixtures were prepared by powder metallurgy method. The prepared mixtures were wet milled with zirconia ball mill for 24 h and sieved. After drying, the powders were compacted by uniaxial pressing at 200 MPa. The green compacts were sintered at 1500-1600 oC for 1-5 h in air conditions using a heating rate of 5 oC min-1 in a high temperature furnace. Then, microstructure (SEM), phase analysis (XRD), mechanical (hardness, 3-point bending and wear) and physical properties (% shrinkage, water absorption, porosity and density) tests were performed on the ceramic composites. In this study, whether there is a phase change in the ZrO2 - CeO2 mixture at high sintering temperatures and the effect of mullite additive on the properties of this mixture was investigated.

___

  • [1] Boyraz T. An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods. Istanbul Technical University / Graduate School of Natural and Applied Sciences, (Doctoral dissertation). 150p, İstanbul, Turkey, 2008.
  • [2] Pekdemir AD. Preparation and characterization of boron carbide at low-temperature from boric acid and polyols. Ankara University / Graduate School of Natural and Applied Sciences, (Doctoral dissertation). 178p, Ankara, Turkey, 2018.
  • [3] Ceylan A. The production of functionally graded SiAlON ceramics by tape casting method. Anadolu University / Graduate School of Natural and Applied Sciences, (Doctoral dissertation). 204p, Eskişehir, Turkey, 2006.
  • [4] Abi CB. An investigation on fracture toughness of traditional and technical ceramics. Afyon Kocatepe University / Graduate School of Natural and Applied Sciences, (Doctoral dissertation). 194p, Afyon, Turkey, 2009.
  • [5] Hafızoğlu MA. Production, characterization and investigation of wear properties of zirconia ceramics with mullite additives and stabilized with different oxides. Sivas Cumhuriyet University / Graduate School of Natural and Applied Sciences, (Doctoral dissertation). 248p, Sivas, Turkey, 2021.
  • [6] Hafızoğlu MA., Akkuş A. and Boyraz T. (2021). Fabrication and characterization of mullite reinforced Y2O3 added ZrO2 ceramics. International Conference on Engineering Technologies (ICENTE’21), 18-20 November 2021, 124, Konya, Turkey.
  • [7] Hafızoğlu MA., Akkuş A. and Boyraz T. Fabrication and characterization of mullite reinforced CeO2 added ZrO2 ceramics. International Conference on Engineering, Natural and Applied Science (ICENAS’21), 24-26 November 2021, 128, Osmaniye, Turkey.
  • [8] Cutler RA., Reynolds JR. and Jones A. Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia. Journal of the American Ceramic Society 1992; 75(8); 2173-2183.
  • [9] Boyacıoğlu T. Improvement of room temperature mechanical properties of various amount of metal oxide doping cubic zirconia (c-ZrO2) used as electrolyte material for solid oxide fuel cells. Gazi University / Graduate School of Natural and Applied Sciences, (Master's thesis). 123p, Ankara, Turkey, 2007.
  • [10] Boyraz T. Dental porcelain powders. Sakarya University / Graduate School of Natural and Applied Sciences, (Master's thesis). 131p, Sakarya, Turkey, 1998.
  • [11] Liu PF., Li Z., Xiao P., Luo H. and Jiang TH. Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting. Ceramics International 2018; 44(2); 1394-1403.
  • [12] Eichler J., Rödel J., Eisele U. and Hoffman M. Effect of grain size on mechanical properties of submicrometer 3Y‐TZP: fracture strength and hydrothermal degradation. Journal of the American Ceramic Society 2007; 90(9); 2830-2836.
  • [13] Sun J., Gao L., Iwasa M., Nakayama T. and Niihara, K. Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceramics International 2005; 31(8); 1131-1134.
  • [14] El Ouatib R., Guillemet S., Durand B., Samdi A., Rakho LE. and Moussa R. Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite. Journal of the European Ceramic Society 2005; 25(1); 73-80.
  • [15] Kucuk I. and Boyraz T. Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites. Journal of Ceramic Processing Research 2019; 20(1); 73-79.
  • [16] Kumar P., Nath M., Ghosh A. and Tripathi HS. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide. Materials Characterization 2015; 101; 34-39.
  • [17] Roy J., Das S. and Maitra S. Solgel‐processed mullite coating—a review. International Journal of Applied Ceramic Technology 2015; 12; E71-E77.
  • [18] Denry I. and Kelly JR. State of the art of zirconia for dental applications. Dental materials 2008; 24(3); 299-307.
  • [19] Çitak E. and Boyraz T. Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics. Acta Physica Polonica A 2014; 125(2); 465-468.
  • [20] Önen U. and Boyraz T. Microstructural characterization and thermal properties of aluminium titanate/spinel ceramic matrix composites. Acta Phys. Pol. A 2014; 125(2); 488-490.
  • [21] Sacli M., Onen U. and Boyraz T. Microstructural characterization and thermal properties of aluminium titanate/porcelain ceramic matrix composites. Acta Physica Polonica A 2015; 127(4); 1133-1135.
  • [22] Boyraz T. and Akkuş A. Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics, Journal of Ceramic Processing Research 2021; 22(2), pp. 226-231.
  • [23] Akkus A. and Boyraz T. Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods. Journal of Ceramic Processing Research 2018; 19(3); 249-52.
  • [24] Kucuk I., Boyraz T., Gökçe H. and Öveçoğlu ML. Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites. Ceramics International 2018; 44(7); 8277-8282.
  • [25] Ming-qing Y., Shi-gang F., Lian-meng Z. and Shu-zhen S. Mechanical properties of ZrO 2 ceramic stabilized by Y 2 O 3 and CeO 2. Journal of Wuhan University of Technology-Materials Science Editorial 2002; 17(2); 14-18.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi
Sayıdaki Diğer Makaleler

Torpido Benzeri Geometrilerin İki Tandem Düzenlemesi İçin Akış Yapılarının İncelenmesi

Ezgi AKBUDAK, Bülent YANIKTEPE, Ertuğrul ŞEKEROĞLU, Ömer KENAN, Muammer OZGOREN

İstifleme Sırasının Kompozit Katmanlı Basınçlı Kaplarının Yapısal Performansına Etkileri

Taner COŞKUN, Ömer ŞAHİN

Farklı Etilen Oranlarına Sahip EPDM Kauçuklarından Kükürt Vulkanizasyonuyla Üretilen Kauçukların Reolojik ve Mekanik Özelliklerinin İncelenmesi

Hakan ULUSOY, Feridun DEMİR

COVID-19 Real Time PCR Test Sonuçlarının PCR Cihazı ve CAtenA Smart PCR Bioinformatik Programı Üzerinden Değerlendirme Sürelerinin Karşılaştırılması

Ayşe Rüveyda UĞUR, Habibe ÖVET

Mullit Takviyeli CeO2 Katkılı ZrO2 Seramiklerinin İmalatı ve Karakterizasyonu

Mehmet Akif HAFIZOĞLU, Ahmet AKKUŞ, Tahsin BOYRAZ

Türkiye'nin Farklı Bölgelerdeki Güneş Enerjisi Potansiyelinin Analizi

Serenay EMİKÖNEL, Ayşe BİLHAN

Sıcak Dövme Kalıp ve İş Parçasının Tasarımının Performansı Üzerine Bir Araştırma

Ece Destina BEKLETENLER, Simge İRİZALP, Murat DELİBALCI

Tek Kademeli Absorbsiyonlu Soğutma Sisteminin Farklı Çalışma Sıcaklıklarındaki Performans Analizi

Ali Burak YAVUZ, Osman KARA, Bülent YANIKTEPE

Akışkanlaştırıcı Katkı Oranının Betonların Aşınma Direnci Üzerine Etkisinin Araştırılması

Behcet DÜNDAR, Emriye ÇINAR, Cebrail KAPLAN

Hidrojen Üretimi İçin Geçiş Metali İhtiva Eden Elektrokatalizörlerin Elektrokimyasal Üretimi

Eren ERGEN, Hüseyin NAZLIGÜL, Başak DOĞRU MERT