Çevre Numunelerindeki Magnezyumun Akış Enjeksiyon Analiz Yöntemi ile İyon Seçici Elektrot Kullanarak Potansiyometrik Tayini

Bu çalışmada, su numunelerindeki magnezyum derişiminin belirlenmesinde kullanılmak üzere ticari olarak satın alınan iyonofor madde ile Mg2+-seçici mikro potansiyometrik PVC-membran elektrot geliştirildi. Elektrotun potansiyometrik performans karakteristikleri belirlendi ve çevresel analizlere uygunluğu araştırıldı. Hazırlanan Mg2+-seçici elektrot ile alınan ölçümlerde ana iyon çözeltisine karşı her 10 kat konsantrasyon değişimi için 27.6 potansiyel farkı gözlendi. Elektrot, 1x10-1-1x10-5 mol L-1 derişim aralığında ana iyon çözeltisine karşı doğrusal davranış sergilediği, alkali ve toprak alkali metal iyonlarının yanında ana iyona karşı oldukça seçici olduğu belirlendi. Laboratuvarda mikro ölü hacme sahip akış hücreleri hazırlandı ve akış enjeksiyon analizi (AEA) sisteminde (hareketli faz olarak 5x10-5 CaSO4 ve MgSO4; 1x10-6 NaCl, KNO3, LiNO3 ve NH4Cl çözelti karışımı, akış hızı: 1,0 mL dak-1ve enjeksiyon hacmi 20 μL) geliştirilen bu elektrotların detektör olarak kullanılması ile çevresel su numunelerinde kalsiyum tayini yapıldı. Ayrıca, su numunelerindeki magnezyum tayini standart ekleme yöntemi ile de yapıldı ve tüm ölçümler potansiyometrik sonuçlarla karşılaştırmalı olarak verildi. Elde edilen sonuçlar, geliştirilen Mg2+-seçici mikro potansiyometrik PVC-membran elektrot ile çevre numunelerindeki sularda magnezyum iyonunun rutin tayininde etkin bir şekilde kullanılabileceğini göstermektedir.

___

  • [1] Gallardo J.S., Alegret M.A.D., Roman R., Munoz P.R., Hernandez L., Leija L., del Valle M. Determination of Ammonium Ion Employing an Electronic Tongue Based on Potentiometric Sensors. Analytical letter 2003; 6(14): 2893-2908.
  • [2] Gismera M.J., Arias S., Sevilla M.T., Procopio J.R. (2009). Simultaneous Quantification of Heavy Metals Using a Solid State Potentiometric Sensor Array. Electroanalysis 2009; 21: 979-987.
  • [3] Gutierrez M., Alegret S., Caceres R., Casadesus J., Marfa O., del Valle M. Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agric. Food Chem., 2008; 56: 1810-1817.
  • [4] Amini M.K., Ghaedi M., Rafi A., Habibi M.H., Zohory M.M. Iodide selective electrodes based on bis(2-mercaptobenzothiazolato) mercury(ıı) and bis(4-chlorothiophenolato) mercury(II) carriers. Sensors 2003; 3(11): 509-523.
  • [5] Yang X., Hibberta D.B., Alexanderb P.W. Flow injection potentiometry by poly(vinyl chloride)membrane electrodes with substituted azacrown ionophores for the determination of lead(II) and mercury(II) ions. Anal. Chim. Acta 1998; 372: 387-398.
  • [6] Hassan S.S., Sayour H.E., Al-Mehrezi S.S. A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 2007; 581: 13-18.
  • [7] Shamsipur M., Mizani F., Mousavi M.F., Alizadeh N., Alizadeh K., Eshghi H., Karami H. A novel flow injection potentiometric graphite coated ionselective electrode for the low level determination of uranyl ion. Anal. Chim. Acta 2007; 589: 22-32.
  • [8] Cardwell T.J., Cattrall R.W., Hauser P.C., Hamilton I.C. A multi-ion sensor cell and dataacquisition system for flow injection analysis. Anal. Chim. Acta 1988; 214: 359-366.
  • [9] Gupta V.K., Prasad R., Kumar A. Magnesium–tetrazaporphyrin incorporated PVC matrix as a new material for fabrication of Mg2+ selective potentiometric sensor. Talanta 2004; 63: 1027–1033.
  • [10] Kumar P., Shim Y-B. A novel Mg(II)-selective sensor based on 5,10,15,20-tetrakis(2-furyl)-21, 23-dithiaporphyrin as an electroactive material. Journal of Electroanalytical Chemistry 2011; 661: 25–30.
  • [11] Capit´an-Vallvey L.F., Fern´andez R.M.D., G´alvez P. A.C., G´omez J. Magnesium-selective test strip, Talanta 2005; 65: 239–245.
  • [12] Fuentea M.A., Montes F., Guerrero G., Jua´reza M. Total and soluble contents of calcium, magnesium, phosphorus and zinc in yoghurts. Food Chemistry 2003; 80: 573–578.
  • [13] Asfaw A., Wibetoe G. Simultaneous determination of hydride (Se) and non-hydride-forming (Ca, Mg, K, P, S and Zn) elements in various beverages (beer, coffee, and milk), with minimum sample preparation, by ICP-AES and use of a dual-mode sample-introduction system. Anal. Bioanal. Chem., 2005; 382(1): 173-179.
  • [14] Kovachev N., Almagro B., Aguirre M.Á., Hidalgo M., Gañán-Calvo A.M., Canals A. Development and characterization of a Flow Focusing multi nebulization system for sample introduction in ICP-based spectrometric techniques, J. Anal. At. Spectrom., 2009; 24: 1213-1221.
  • [15] Kim J.H., Lee J.H. Simultaneous determination of six cations in mineral water by single-column ion chromatography, J. Chromatogr. A 1997; 782(1): 140-146.[16] Noto V.D., Damioli P., Vittadello M., Dall’Igna R., Boella F. Potentiometric sensors with liquid polymer electrolytes based on polyethyleneglycol400, LiCl and d-MgCl2,. Electrochimica Acta 2003; 48: 2329-2342.
  • [17] Baniwal S., Chandra S., Panwar A., Singh A.K. Poly(vinyl chloride)-based macrocyclic membrane sensors for magnesium. Talanta 1999; 50(3): 499-508.
  • [18] Singh A.K., Saxena P., Panwar A. Manganese(II)-selective PVC membrane electrode based on a pentaazamacrocyclic manganese complex, Sensors and Actuators B 2005; 110(2): 377–381.
  • [19] Zhang H., Zhang Z., Li J., Cai S. Effects of Mg2+ on supported bilayer lipid membrane on a glassy carbon electrode during membrane formation, International Journal of Electrochemical Science 2007; 2: 788–796.
  • [20] Zhang W., Jenny L., Spichiger U.E. A comparison of neutral Mg2+-selective ionophores in solvent polymeric membranes: complex stoichiometry and lipophilicity, Analytical Sciences 2000; 16(1): 11–18.
  • [21] Peper S., Telting-Diaz M., Almond P., Albrecht-Schmitt T., Bakker E. Perbrominated closo-dodecacarborane anion, 1-HCB11Br11-, as an ion exchanger in cation-selective chemical sensors. Anal Chem., 2002; 74(6): 1327-1332.
  • [22] Rudnitskaya A., Ehlert A., Legin A., Vlasov Y., Büttgenbach S. Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater. Talanta 2001; 55(2): 425-431.
  • [23] Captian-Vallvey L. F., Fernandez-Ramos M.D. Characterization of a transparent optical test strip for quantification of water hardness. Analytica Chimica Acta 2003; 481: 139-148.
  • [24] Saurina J., Lopez-Aviles E., Le M., Santiago A. Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Analytica Chimica Acta 2002; 464: 89–98.
  • [25] Moreno L., Merlos A., Abramova N. Multi-sensor array used as an “electronic tonque” for mineral water analyses, Sensors and Actuators B 2006; 116: 130-134.
  • [26] Rius A., Callao M. Application of time series models to the monitoring of a sensor array analytical system, Trends in Analytical Chemistry 2001; 20: 168-177.
  • [27] IUPAC, Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for nomen-clature of Ion-selective Electrodes, Pure Appl. Chem., 1994; 66: 2527-2536.