Metal oksit parçacıkları üzerinde kompleks boya molekülünün fraktal adsorpsiyon özellikleri ve istatistiksel analiz yaklaşımı—NiO nanoparçacıkları üzerine Reaktif Siyah 5(RB 5) adsorpsiyonu çalışması

Bu çalışmada, yüksek verimli boya adsorpsiyonu için çevre koşulları; başlangıç ​​pH, başlangıç ​​boya konsantrasyonu, sıcaklık, adsorban konsantrasyonu sırasıyla 6.0, 40oC, 100 mgL-1 ve 1 g L-1 olarak belirlenmiştir. SEM, FT-IR ve XRD analizlerinden elde edilen sonuçlar değerlendirilmiş ve literatürdeki temel bilgilerle karşılaştırılmıştır. Denge verilerinin en iyi Langmuir izoterm modeli ile temsil edilebileceği bulunmuş ve RB 5-NiO adsorpsiyon sistem davranışının yalancı ikinci dereceden kinetik modeli başarıyla açıkladığı sonucuna varılmıştır. Boya-nanoadsorban sisteminin ekzotermik (ΔH
Anahtar Kelimeler:

adsorpsiyon, nanoparçacık, RSM

Fractal adsorption characteristics and statistical analysis approach of complex dye molecule on metal oxide particles—A case study of Reactive Black 5(RB 5) adsorption onto NiO nanoparticles

In this study, environmental conditions for high efficient dye adsorption; initial pH, initial dye concentration, temperature, adsorbent concentration were determined as 6.0, 40oC, 100 mgL-1 and 1 g L-1, respectively. Obtained results from SEM, FT-IR and XRD analyzes were evaluated and compared with foundings in literature. It was found that the equilibrium data can be best represented with Langmuir isotherm model, and it was concluded that RB 5-NiO adsorption system behaviour was explained the pseudo-second order kinetic model successfully. It was concluded that dye-nanoadsorbent system was exothermic (ΔH

___

  • [1] Akram, M.W., Abdul Motin, S. M., Hoque, M.A., and Mustafi N.N., (2019). Design, construction and performance test of a solar still for water desalination in Bangladesh perspective. Conference Paper in AIP Conference Proceedings, 2121, 130001, https://doi.org/10.1063/1.5115947
  • [2] Rahman, M.H., Mamtaz, R., and Ferdausi, S.A., (1997). Pilot solar desalination plants in Bangladesh. WEDC CONFERENCE. 23(1997), 178–181.
  • [3] Saleh, A.S., (2015). Solar Desalination in Bangladesh:Progress, Prospect, and Challanges, Proceedings of the International Conference on Mechanical Engineering and Renewable Energy. (ICMERE2015) 26 – 29 November, Chittagong, Bangladesh.
  • [4] Hallaji, K., Yazıcıgil, H., (1996). Optimal management of a coastal aquifer in Southern Turkey. Journal of Water Resources Planning and Management. Volume 12.2, Issue 4, 233-244.
  • [5] Bhattacharyya A., (2013). Solar stills for desalination of water in rural households. Int. J. Environ. Sustain., 2, no. 1, 21-30.
  • [6] Kulkarni, S.J., Kherde, P.M., (2013). Research on Advanced Biological Effluent Treatment: A Review. International Journal of Research & Review (www.gkpublication.in). 2, 508-512.
  • [7] Sheshdeh, R.K., Nikou, M.R. K., Badii, K., Limaee, N.Y., Golkarnarenji, G., (2014). Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers. 45, 1792–1802.
  • [8] Slosarczyk, A., Paszkiewicz, Z., Paluszkiewicz, C., (2005). FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure. 657–661.
  • [9] Tharaneedhar, V., Kumar, P.S., (2017). Saravanan, A. Ravikumar, C. Jaikumar, V. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies. 11, 1–11.
  • [10] Chowdhury, A.N., Rahim, A., Ferdosi, Y. J., Azam, M. S., Hossain, M. M., (2010). Cobalt–nickel mixed oxide surface: A promising adsorbent for the removal of PR dye from water. Applied Surface Science. 256, 3718–3724.
  • [11] Gabrovska M. Krstić, J., Edreva-Kardjieva, R., Stanković, M., Jovanović, D., (2006). The influence of the support on the properties of nickel catalysts for edible oil hydrogenation. Appl. Catal. A-Gen., 299, 73.
  • [12] Al - Amri L. S. A. A., Subhi, M., and Namdeti, R., (2014). Comparison Studies for the removal of Methylene Blue from aqueous solution using Tea and Coffee powder. International Journal of Chemical Technology Research. 6, 619 – 627.
  • [13] Lingamdinne, L.P., Choi, Y.L., SoonKim, I.M,. Kim, Yang, J.K., Koduru, J.R., YoungChang, Y., (2017). Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of Hazardous Materials. 326, 145–156.
  • [14] Gupta, V. K., Jain, R., Siddiqui, M. N., Saleh, T. A., Agarwal, S., Malati, S., Pathak, D., (2010). Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon. J. Chem. Eng. Data. 55, 5225–5229 [15] Saeeda, A., Sharif, M., Iqbal, M., (2010). Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater. 179, 564−572.
  • [16] Chollom, M.N., Rathilal, S., Swalaha, F.M., Bakare B.F., (2020). Adsorptive removal of veterinary antibiotics from water using an integrated photocatalyst (IPCA) Int. J. Environ. Stud., 77 (2), 236-254
  • [17] Gupta, V. K., Jain, R., Shrivastava, M., Navak, A., (2010). Equilibrium and thermodynamic studies on the adsorption of the dye tartrazine onto waste coconut husks carbon and activated Carbon. J. Chem. Eng. Data. 55, 5083−5090.
  • [18] Aqdam, S.R., Otzen, D.E., Morshedi, D., (2021). Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: Equilibrium isotherm and kinetic modelingJournal of Colloid and Interface Science. 602, 490-503.
  • [19] Dotto, G. L., Pinto, L. A. A., (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohyd. Polym. 84, 231−238.
  • [20] Kumar, P.S., Ramalingam S., Senthamarai, C., Niranjanaa M., Vijayalakshmi P., Sivanesan, S., (2010). Adsorption of Dye from Aqueous Solution by Cashew Nut Shell: Studies on Equilibrium Isotherm, Desalination, Volume 261, Issue 1-2, Pages 52 – 60.
  • [21] Deniz, F., Karaman, S., Saygideger, S.D., (2011). Biosorption of a model basic dye onto Pinus brutia Ten: evaluating of equilibrium, kinetic and thermodynamic data, Desalination, 270, 199-205.
  • [22] Hameed, B.H., (2008). Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J. Hazard Mater., 154, 204-212.
  • [23] Ho, Y., McKay, G., (1999). Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465.
  • [24] Shah, J., Jan, M., Zeeshan, R., Imran, M.M., (2017). Kinetic, equilibrium and thermodynamic studies for sorption of 2,4-dichlorophenol onto surfactant modified fuller's earth. Appl. Clay Sci., 143, 227-233.
  • [25] Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H., (2010). Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater., 181, 1039–1050.
  • [26] Shabani, S., Dinari, M., (2021). Cu-Ca-Al-layered double hydroxide modified by itaconic acid as an adsorbent for anionic dye removal: Kinetic and isotherm study, Inorganic Chemistry Communications, 133, 108914.
  • [27] Mishra, S., Sahoo, S.S., Debnath, A.K., Muthe, K.P., Das, N., Parhi, P., (2020). Cobalt ferrite nanoparticles prepared by microwave hydrothermal synthesis and adsorption efficiency for organic dyes: Isotherms, thermodynamics and kinetic studies, Advanced Powder Technology. 133, 4552-4562.
  • [28] Design-Expert 9 User’s Guide Multifactor RSM Tutorial: Stat-Ease Incorporated, (2013), 1–56.
  • [29] Dashamiri, S., Ghaedi, M., Asfaram, A., Zare, F., Wang, S., (2017). Multi-response optimization of ultrasound assisted competitive adsorption of dyes onto Cu(OH)2-nanoparticle loaded activated carbon: Central composite design, Ultrasonics Sonochemistry, 34, 343–353.
  • [30] Bajpai, S., Gupta, S.K., Dey, A., Jha M.K., Bajpai, V., Joshi, S., Gupta, A., (2012). Application of Central Composite Design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: Modeling, optimization, and study of interactive variables, Journal of Hazardous Materials. 227– 228: 436– 444.