Sporcularda kor kaslarının statik ve dinamik dayanıklılığı arasındaki ilişkinin incelenmesi

Bu çalışma, sporcularda statik ve dinamik kor dayanıklılık testlerinin birbirinin yerine kullanılıp kullanılamayacağını değerlendirmek ve bu testler arasındaki ilişkiyi incelemek amacıyla yapıldı. Bu çalışmaya 1 Ocak-15 Mart 2017 tarihleri arasında Türkiye Olimpiyat Hazırlık Merkezi’ne gelen, onamları alınan ve dahil etme kriterlerine uyan 40 erkek 20 kadın olmak üzere 60 milli (elit) judo sporcusu (Yaş: 17±3 yıl; Boy: 169±8.4 cm; Vücut ağırlığı: 67.7±16.5 kg; Vücut kitle indeksi: 23.4±4.4 kg/m²) dahil edildi. Sporcuların kor kaslarının dayanıklılığı, statik ve dinamik olarak değerlendirildi. Kor kaslarının statik dayanıklılığı gövde fleksiyon testi, gövde ekstansiyon testi, sağ ve sol lateral köprü testleri ile değerlendirildi. Testler, test pozisyonu bozulduğunda veya kişi testi devam ettiremeyeceğini söylediğinde sonlandırıldı ve süre kaydedildi. Kor kaslarının dinamik dayanıklılığı sit-ups, modifiye push-ups, sağ ve sol lateral fleksiyon-tekrar testleri ile değerlendirildi. Sporcuların her bir testi 60 saniye boyunca kaç kez yapabildikleri kaydedildi. Milli takım judo sporcularının kor kaslarının statik ve dinamik dayanıklılığı arasındaki ilişki incelendiğinde; gövde fleksiyon testi yalnızca sit-ups testi ile ilişkili bulunurken, diğer tüm statik kor dayanıklılık testleri dinamik kor dayanıklılık testleri ile ilişkili bulundu (r=0.260/0.500, p<0.05). Sonuç olarak, tüm statik ve dinamik kor dayanıklılık parametreleri kendi içerisinde ilişkili bulundu. Birbirinin yerine kullanmayı düşündüğümüz gövde fleksiyon testi/sit-ups testi, gövde ekstansiyon testi/modifiye push-ups testi, sağ lateral köprü testi/sağ lateral fleksiyon-tekrar testi ve sol lateral köprü testi/sol lateral fleksiyon-tekrar testi arasında ilişki bulunmasından dolayı, bu testlerin birbirinin yerine kullanılabileceği düşünülmektedir. Ayrıca bu testlerin birbirinin yerine kullanılabilirliğini test etmek için, diğer spor dallarındaki sporcularda yapılacak çalışmalara da ihtiyaç vardır.

The investigation of relationship between static and dynamic endurance of core muscles in athletes

The purpose of this study was to evaluate whether static and dynamic core endurance tests could be used in place of each other and to examine the relationship between these tests in athletes. A total of 60 national (elite) team judo athletes, 40 men and 20 women (Age: 17±3 years; Height: 169±8.4 cm; Body weight: 67.7±16.5 kg; Body mass index: 23.4±4 kg/m²), who came to Turkey Olympic Athletic Educated Center between 1 January-15 March 2017, their verbal approvals were taken and were suited in the inclusion criteria, were included in the study. The endurance of the core muscles of the athletes was evaluated statically and dynamically. Static endurance of the core muscles was evaluated with trunk flexion test, trunk extension test, right and left lateral bridge tests. Tests were terminated when the test position was deteriorated or the person said that he could not continue the test and the time was recorded. Dynamic endurance of the core muscles was evaluated with sit-ups test, modified push-ups test, right and left lateral flexion-repeat tests. It was noted how many times the athletes could perform each test for 60 seconds. When the relationship between the static and dynamic endurance of the core muscles of national team judo athletes was examined; trunk flexion test was only associated with the sit-ups test, all other static core endurance tests were associated with dynamic core endurance tests (r=0.260/0.500, p<0.05). In conclusion, all static and dynamic core endurance parameters were related within themselves. Because of the relationship between the trunk flexion test/sit-ups test, trunk extension test/modified push-ups test, right lateral bridge test/right lateral flexion-repeat test and left lateral bridge test/left lateral flexion-repeat test, we think that these tests can be used interchangeably. In addition, there is also a need for studies to be conducted on athletes in other sports to test the usability of these tests for each other.

___

  • Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil.2004;85(3):86-92.
  • Richardson C, Jull G, Hodges P, Hides J. Therapeutic Exercise for Spinal Segmental Stabilization in Low Back Pain: Scientific Basis and Clinical Approach. 1st ed. Sydney: Churchill Livingstone; 1999.
  • Borghuis J, Hof AL, Lemmink KA. The importance of sensory-motor control in providing core stability:implications for measurement and training. Sports Med. 2008;38(11):893-916.
  • Cholewicki J, Panjabi MM, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine. 1997;22(19):2207–12.
  • Ebenbichler GR, Oddsson LI, Kollmitzer J, Erim Z. Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc. 2001;33(11):1889–98.
  • Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189-98.
  • Preuss R, Fung J. Musculature and biomechanics of the trunk in the maintenance of upright posture. J Electromyogr Kinesiol. 2008;18(5):815-28.
  • McGill S. Low Back Disorders: Evidence-Based Prevention and Rehabilitation. 2nd ed. Champaign, IL: Human Kinetics. 2007.
  • Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6);926-34.
  • Silfies SP, Ebaugh D, Pontillo M, Butowicz CM. Critical review of the impact of core stability on upper extremity athletic injury and performance. Braz J Phys Ther. 2015;19(5):360-8.
  • Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383-9.
  • Bergmark A. Stability of the lumbarspine. A study in mechanical engineering. Acta Orthop Scand Suppl. 1989;230:1-54.
  • Faulkner RA, Sprigings EJ, McQuarrie A, Bell RD. A partial curl-up protocol for adults based on an analysis of two procedures. Canadian journal of sport sciences= Journal canadien des sciences du sport. 1989;14(3):135-141.
  • Moreland J, Finch E, Stratford P, Balsor B, Gill C. Interrater reliability of six tests of trunk muscle function and endurance. Journal of Orthopaedic & Sports Physical Therapy 1997; 26(4):200-208.
  • Baltacı G, Bayrakçı Tunay V, Beşler A, Ergun N. Spor Yaralanmalarında Egzersiz Tedavisi. 2 Basım. Ankara: ALP Yayınevi; 2006:102-105.
  • Öner J, Öner H. İskelet kas lifi tipleri. Turkiye Klinikleri J Med Sci. 2004;24:503-7.
  • Lieber RL. Skeletal muscle structure, function, and plasticity. 1st ed. Philadelphia: Lippincott Williams &Wilkins; 2002.
  • McGill SM, Childs A, Liebenson C. Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil.1999;80(8):941-9.
  • Ambegaonkar JP, Mettinger LM, Caswell SV, Burtt A, Cortes N. Relationships between core endurance, hip strength, and balance in collegiate female athletes. Int J Sports Phys Ther. 2014;9(5):604-16.
  • Sikorski WG, Mickiewicz G, Maole B, Laska C. Structure of the content and work capacity of the judoists. Polish Judo Association. Warsaw. 1987.
  • Callister R, Callister RJ, Staron RS, Fleck SJ, Tesch P, Dudley GA. Physiological characteristics of elite Judo athletes. Int J Sports Med. 1991;12(2):196-203.
  • Franchini E, Yuri Takito M, Yuzo Nakamura F, Ayumi Matsushigue K, Peduti Dal’Molin Kiss MA. Effects of recovery type after a judo combat on blood lactate removaland on performance in an intermittent anaerobic task. J Sports Med Phys Fitness. 2003;43(4):424-31.
  • Muramatsu S, Horiyasu T, Sato SI, et al. The relationship between aerobic capacity and peak power during intermittent anaerobic exercise of judo athletes. Bulletin of the Association for the Scientific Study on Judo Kodokan. 1994;8:151-60.