Keynesian and Neoclassical Closures in an Agent-Based Context

1980'li yılların "kapanış" tartışmalarından bu yana, analitik makro-modellerdeki karşılaştırmalı-statik türetmelerin seçilen kapanış kuralına çok duyarlı olduğu bilinmektedir. Bu tartışmalar Keynesçileri Keynesgil kapanışların ortodoks iktisat akımları tarafından benimsenenlere üstün olduğu yargısına götürmüş, karşı görüşte olanlar da bunun aksini savunmuşlardır. Bu makalede iktisadi birim temelli, ya da çok-birimli sistemlerin geliştirilmesinden sonra, kapanış tartışmasının artık aşıldığı ileri sürülmektedir. Hem Keynesçi, hem de neoklasik modellerin bazı öğeleri, daha "sentetik" sayılabilecek yeni bir ekonomik ortama geçişte ayakta kalabilmiş ise de, iktisadi birim temelli bir yaklaşım, başlangıçtan beri tartışmanın özünde yatan bir ihtiyacı (yani, aşırı basitleştirmelere başvurma ihtiyacını) ortadan kaldırmıştır.

İktisadi Birim Temelli Analiz Bağlamında Keynesgil ve Neoklasik Kapanışlar Üzerine

Since the “closure debate” of the 1980s it is well known that comparative static derivatives in analytical macro models are highly sensitive to the closure rule selected. This led Keynesians to conclude that Keynesian closures were superior to those favored by the orthodoxy and vice versa. It is argued that with the advent of agent-based or multi-agent systems, the closure debate is superseded. While elements of both Keynesian and neoclassical models survive the transition to the more synthetic environment, an agent-based approach eliminates the need for drastic simplification that was at the root of the debate from the beginning.

___

  • ABDALLAH, S. and LESSER, V. (2007), “Multiagent Reinforcement Learning and Self-Organization in a Network of Agents”, in Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multi-Agent Systems, Honolulu.
  • ARTHUR, W. B., DURLAUF, S. and LANE, D. (1997), The Economy as an Evolving Complex System, Volume 2, New York: Addison-Wesley.
  • AXTELL, R. (1999), “The Emergence of Firms In A Population of Agents”, http://www.brookings.edu/es/dynamics/papers/firms/firmspage.htm.
  • AXTELL, R., EPSTEIN, J. and YOUNG, P. (2001), “The Emergence of Classes in A Multi-Agent Bargaining Model”, in S. Durlauf and P. Young (eds.), Social Dynamics, Cambridge, MA: MIT Press, 191-212.
  • BACHA, E. L. (1990), “A Three-Gap Model of Foreign Transfers and the GDP Growth Rate in Developing Countries”, Journal of Development Economics, 32 (2), 279-96.
  • BARABÁSI, A.-L. (2003), Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life, Penguin Group (USA) Inc.: Plume Books.
  • BARABÁSI, A.-L. and ALBERT, R. (1999), “Emergence of Scaling in Random Networks”, Science, 286, 509-12.
  • BASU, K. (1994), “The Traveler’s Dilemma: Paradoxes of Rationality in Game Theory”, American Economic Review, 84 (2), 391-5.
  • BOUTILIER, C., SHOHAM, Y. and WELLMAN, M. P. (1997), “Economic Principles of Multiagent Systems”, Artificial Intelligence, 94 (1-2), 1-6.
  • DEBREU, G. (1974), “Excess Demand Functions”, Journal of Mathematical Economics, 1, 15-21.
  • DESSALLES, J. L., FERBER, J. and PHAN, D. (2007), “Emergence in Agent Based Computational Social Science: Conceptual, Formal and Diagrammatic Analysis”,http://perso.univ-rennes1.fr/denis.phan/papers/DessallesFerberPhan 2007.pdf.
  • DEWATRIPONT, M. and MICHEL, G. (1987), “On Closure Rules, Homogeneity and Dynamics in Applied General Equilibrium Models”, Journal of Development Economics, 26 (1), 65-78.
  • DURLAUF, S. N. (1996), “A Theory of Persistent Income Inequality”, Journal of Economic Growth, 1 (1), 75-93. ————(1999), “How Can Statistical Mechanics Contribute to Social Sciences?”, prepared for the Proceedings of the National Academy of Sciences.
  • DUTT, A. K. (2007), “Heterodox Development Economics and the Role of Aggregate Demand”, Centre for Development Studies, University of Glasgow, http://www.eurovirology.com/centres/developmentstudies/conference2007/papers/.
  • EPSTEIN, J. and AXTELL R. (1996), Growing Artificial Societies: Social Science from the Bottom Up, Washington, DC: Brookings Institution Press.
  • GATTI, D. D., GAFFEO, E., GALLEGATI M., GIULIONI, G. and PALESTRINI, A. (2008), Emergent Macroeconomics, New Economic Windows. Frankfurt: Springer.
  • GIBSON, B. (2007), “A Multi-Agent Systems Approach to Microeconomic Foundations of Macro”, University of Massachusetts, Department of Economics Working Paper Series.
  • HENRICH, J., BOYD, R., BOWLES, S., CAMERER, C. FEHR, E. and GINTIS, H. (2004), Foundations of Human Sociality: Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies, Oxford: Oxford University Press.
  • HOLLAND, J. (1998), Emergence: From Chaos to Order, New York, NY: Basic Books. LUCAS, R. E. (1976), “Econometric Policy Evaluation: A Critique”, Carnegie-Rochester Conference Series on Public Policy, 1 (1), 19-46.
  • LUCAS, R. E. and SARGENT, T. J. (1978), “After Keynesian Macroeconomics”, in After the Phillips Curve: Persistence of High Inflation and High Unemployment, Boston, MA: Federal Reserve Bank, 49-72.
  • MACHTA, B. and MACHTA, J. (2005), “Parallel Dynamics and Computational Complexity of Network Growth Models”, Physical Review E 71, 1-9. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0408372.
  • PLOSSER, C. (1989), “Understanding Real Business Cycles”, Journal of Economic Perspectives, 3, 51-77.
  • RAILSBACK, S. F., LYTINEN, S. L., and JACKSON, S. K. (2007), “Agent-Based Simulation Platforms: Review and Development Recommendations”, Simulation, 82 (9), 609-23.
  • RATTSO, J. (1982), “Different Macroclosures of the Original Johansen Model and Their Impact On Policy Evaluation”, Journal of Policy Modeling, 4 (1), 85-97.
  • RIZVI, S. A. T. (1994), “The Microfoundations Project In General Equilibrium Theory”, Cambridge Journal of Economics, 18, 357-77.
  • ROBINSON, S. (2006), “Macro Models and Multipliers: Leontief, Stone, Keynes, and CGE Models”, in A. de Janvry and R. Kanbur (eds.), Poverty, Inequality and Development: Essays in Honor of Erik Thorbecke, Volume 1 of Economic Studies in Inequality, Social Exclusion and Well-Being, New York, NY: Springer US, 205-32.
  • SCHELLING, T. (1971), “Dynamic Models of Segregation”, Journal of Mathematical Sociology, 1, 143-86.
  • SEN, A. (1963), “Neo-Classical and Neo-Keynesian Theories of Distribution”, Economic Record, 39, 54-64.
  • SPILIOPOULOS, K. (2007), “Introduction to Computational Complexity”, http://users.forthnet.gr/ath/kimon/CC/CCC1b.htm. SUTTON, R. S. and BARTO, A. G. (1998), Reinforcement Learning, Cambridge, Massachusetts and London: MIT Press.
  • TAYLOR, L. (1983), Structuralist Macroeconomics, New York: Basic Books. ————(1994), “Gap Models”, Journal of Development Economics, 45, 17-34.
  • WALDROP, M. M. (1994), Complexity, New York, NY: Simon and Schuster.
  • WOOLDRIDGE, M. (ed.) (2002), MultiAgent Systems, West Sussex: John Wiley and Sons.