Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması
Grafen tabakalarının üretim yöntemlerine bakıldığında hem kalite ve yüksek yüzey alanına sahip grafenin sentezlenmesi açısından Kimyasal Buhar Depolama (Chemical Vapor Deposition, CVD) tekniği en sık kullanılan yöntemlerin başında gelmektedir. Öte yandan, kimyasal yöntemler kullanılarak elde edilebilen grafen tabakalar büyük ölçeklerde ve düşük maliyetle hazırlanabilmektedir. Dolayısıyla grafit tabaklardan üç boyutlu grafen hidrojel yapılarını kimyasal olarak üretmek için tercih edilen ve günümüzde de hala oldukça yaygın bir şekilde kullanılan başlıca yöntem Hummer’s metodu ile elde edilen grafen oksit (GO) katmanların hidrotermal içerisinde grafen-hidrojelere (GH-H) dönüştürülmesidir. Çalışmanın amacı, farklı üç boyutlu grafen hidrojel yapılarının hidrotermal yöntemle hazırlanması ve boyutsal özelliklerinin incelenmesini içermektedir. Elde edilen ürünlerin uygulanan yöntem aşamalarına göre karakterizasyonları Ultraviyole ve görünür ışık absorpsiyon spektroskopisi (UV-Vis), Atomik Kuvvet Mikroskopu (AFM), X-Işını Kırınım (XRD) yöntemi, Alan Yayılımlı-Taramalı Elektron Mikroskobu (FE-SEM) ve Raman analizi kullanılarak yapılmıştır.
Preparation of high conductive different sizes of three dimensional graphene hydrogels
The production of graphene layers, both quality and high production cost, is obtained from Chemical Vapor Deposition (CVD) technique. On the other hand, graphene layers can be prepared using wet chemical methods on a large scale and at low cost. Therefore, the main method preferred for the chemical production of three-dimensional graphene hydrogel structures from graphite plates and still widely used today is the conversion of graphene oxide (GO) layers obtained by the Hummer's method to graphene hydrogel (GH-H) in hydrothermal. The aim of the study includes preparation of different three dimensional graphene hydrogel structures by hydrothermal method. Characterization of the products was made with the applied method steps, respectively; Ultraviolet and visible light absorption spectroscopy (UV-Vis), Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM) and Raman analysis.
___
- [1] H. Kuan-I, M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L.
Montes and C.S. Lai, A self aligned high mobility graphene transistor:
decoupling the channel with fluorographene to reduce scattering.
Advanced Materials, 27, pp. 6519–25, 2015. https://doi.org/
10.1002/adma.201502544
- [2] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A.
Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu,
Experimental review of graphene. ISRN Condensed Matter Physics.
International Scholarly Research Network, 1–56, 2012.
https://doi.org/10.5402/2012/501686
- [3] P.R. Wallace, The band theory of graphite. Physical Review, 71,
622–34, 1947.
- [4] B. Seger and P.V. Kamat, Electrocatalytically active graphene-
platinum nanocomposites. role of 2-d carbon support in PEM Fuel
Cells. J, Phys. Chem. C, 113, 7990-7995,
2009.https://doi.org/10.1021/jp900360k
- [5] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang and P.M. Ajayan, Catalytic
performance of Pt nanoparticles on reduced graphene oxide for
methanol electro-oxidation. Carbon, 48, 1124–1130, 2010.
https://doi.org/10.1016/ j.carbon.2009.11.034
- [6] J. Du. H.M. Cheng, The fabrication, properties, and uses of
graphene. Polymer Composites. Macromol. Chem. Phys., 213, 1060–
1077, 2012. https://doi.org/ 10.1002/macp.201200029
- [7] Y.J. Kim, B.K. Kim, Synthesis and properties of silanized
waterborne polyurethane/graphene nanocomposites,. Colloid
Polym. Sci., 292, 51–58, 2014. https://doi.org/10.1007/s00396-013-
3054-2
- [8] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts and R.S.
Ruoff, Graphene and graphene oxide: synthesis, properties, and
applications. Adv. Mater., vol. 22, 3906–24, 2010.
- [9] M.J. Allen, V.C. Tung and R.B. Kaner, Honeycomb carbon: a
review of graphene. chem. Rev., 110, 132–145, 2009.
- [10] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials.
Energy Environ. Sci., 4, 1113–32, 2011.
https://doi.org/10.1039/C0EE00683A
- [11] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj,
Graphene: the new two-dimensional nanomaterial. Angew. Chem.,
Int. Ed., vol. 48, pp. 7752–77, 2009.
- [12] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. R. Rennie, G.O.
Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in
electrochemical capacitors: designing functional materials to
improve performance. Energy Environ. Sci., 3, 1238–1251, 2010.
https://doi.org/10.1039/C0EE00004C
- [13] L.L. Zhang, R. Zhou and X.S. Zhao, Graphene-based materials as
supercapacitor electrodes. J. Mater. Chem., 20, 5983–92, 2010.
https://doi.org/ 10.1039/C000417K
- [14] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff,
Graphene and graphene oxide: synthesis, properties, and
applications. Adv. Mater., 22, 3906-
24,2010.https://doi.org/10.1002/adma.201001068
- [15] L. Zhang, G. Shi, Preparation of Highly Conductive Graphene
Hydrogels for Fabricating Supercapacitors with High Rate
Capability. J. Phys. Chem. C, 115, 17206–212, 2011.
- [16] W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide.
J. Am. Chem. Soc., 80, 1339, 1958. https://doi.org/10.1021/ja01539a017
- [17] J. Meihua, H.K. Tae, C.L. Seong, L.D. Dinh, J.S. Hyeon, W.J. Young.,
K.J. Hae, C. Jian, X. Sishen, H.L. Young, Facile Physical Route to Highly
Crystalline Graphene. Adv. Funct. Mater., 21, 3496–3501, 2011.
- [18] H.A. Seyed, M.G. Mohsen, B.Z. Qing, K. Jang-Kyo, Spontaneous
Formation of Liquid Crystals in Ultralarge Graphene Oxide
Dispersions. Adv. Funct. Mater. 2011, 21,2978–88,
2011.https://doi.org/10.1002/adfm.20110 0448
- [19] S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial
Reduction of Graphene Oxide by Escherichia coli: A Green Chemistry
Approach. Colloids Surf. B, 102, 772–777, 2013. https://doi.org/10.1016/
j.colsurfb.2012.09.011
- [20] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S. Kim,
Investigation of Raman and photoluminescence studies of reduced
graphene oxide sheets. Appl. Phys. A, 106, 501-6, 2012.
- [21] M.S. Dresselhaus, A.J.H. Hofmann, G. Dresselhaus, R. Saito,
Perspectives on carbon nanotubes and graphene raman
spectroscopy. Nano Lett. 10, 751-58, 2010.
https://doi.org/10.1021/nl904286r