Acrylic bone cement at high strength is produced by adding hydroxyapatite additive which was produced using two different calcium sources (Ca(OH)2 and CaCO3) was aimed. Seashell was used as a CaCO3 source. Characterizations were performed using XRD, and FT-IR. Thermal behaviours and surface morphologies were determined using DTA/TG and SEM techniques. The addition of hydroxyapatite synthesized from Ca(OH)2 and CaCO3 increased the compressive strength (from 74 MPa to 106 MPa and 103 MPa) of the resultant cements respectively. These new bone cements have mechanical strengths comparable with commercially available cements and are believed to be more biocompatible since hydroxyapatite is a natural mineral present in the bone structure.
Bu çalışmada, iki farklı kalsiyum kaynağı (Ca(OH)2 and CaCO3) kullanılarak üretilen hidroksiapatit katkısı eklenerek yüksek mukavemetli akrilik kemik yapıştırıcısı üretilmiştir. CaCO3 kaynağı olarak deniz kabuğu kullanılmıştır. Üretilen örnekler, XRD ve FT-IR kullanılarak karakterize edilmiştir. Termal davranış ve yüzey morfolojileri DTA/TG ve SEM teknikleri kullanılarak belirlenmiştir. Ca(OH)2 ve CaCO3 kullanılarak üretilen hidroksiapatit ilavesi, ortaya çıkan yapıştırıcıların basınç dayanımını (74 MPa'dan 106 MPa ve 103 MPa'ya) arttırmıştır. Bu yeni kemik yapıştırıcıları, ticari olarak temin edilebilen örneklerle karşılaştırılabilecek mekanik dayanımlara sahiptir ve hidroksiapatitin kemik yapısında mevcut doğal bir mineral olduğu için daha biyolojik olarak uyumlu olduğuna inanılmaktadır.
___
[1] J. Zhang, C.S. Dai, J. Wei, J.W. Wen, “Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate”, Applied Surface Science, vol. 261, pp. 276-286, 2012.
[2] Z. Khaled, Development of A New Generation of Bone Cements using Nanotechnology, Graduate Program in Engineering Science, School of Graduate and Postdoctoral Studies The University of Western Ontario, London, UK, 2009. [Online] Avaible: https://www.eng.uwo.ca/people/pcharpentier/docs/Khaled%20Thesis.pdf [Accessed May 13, 2020].
[3] K. Serbetci, F. Korkusuz, N. Hasırcı, “Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement”, Turkish Journal of Medical Sciences, vol. 30, pp. 543-549, 2000.
[4] Y.H. Nien, C.L. Huang, “The mechanical study of acrylic bone cement reinforced with carbon nanotube”, Materials Science and Engineering, vol. 169, pp. 134-137, 2010.
[5] S. Marangoz, “Bone Cement”, Totbid Jurnal, vol. 10, pp. 103-108, 2011.
[6] E.M. Rivera, M. Araiza, W. Brostow, V.M. Castano, J.R.D. Estrada, R. Hernandez, J.R. Rodriguez, “Synthesis of hydroxyapatite from eggshells”, Material Letters, vol. 41, pp. 128-134, 1999.
[7] S.J. Lee, S.H. Oh, “Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid”, Material Letters, vol. 57, pp. 4570-4574, 2003.
[8] C. Balázsi, F. Wéber, F. Kövér, Z. E. Horváth, A. Németh, “Preparation of calcium –phosphate bioceramics from natural resources”, Journal of the European Ceramic Society, vol. 27, pp. 1601-1606, 2007.
[9] S.V. Kenneth, X. Zhang, J.B. Massie, M. Wang, C. Kim, “Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants”, Acta Biomaterialia, vol. 3, pp. 910-918, 2007.
[10] U. Ripamonti, J. Crooks, L. Khoali, L. Roden, “The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs”, Biomaterials, vol. 30, pp. 1428-1439, 2009.
[11] S. Jinawath, D. Polchai, M. Yoshimura, “Low-temperature, hydrothermal transformation of aragonite to hydroxyapatite”, Materials Science and Engineering: C, vol. 22, pp. 35-39, 2002.
[12] C.S. Chai, K.A. Gross, B.B. Nissan, “Critical ageing of hydroxyapatite sol–gel solutions”, Biomaterials, vol. 19, pp. 2291-2296, 1998.
[13] X. Yang, Z. Wang, “Synthesis of biphasic ceramics of hydroxyapatite and b-tricalcium phosphate with controlled phase content and porosity”, Journal of Materials Chemistry, vol. 8, pp. 2233-2237, 1998.
[14] G. Gergely, F. Weber, I. Lukacs, L. Illés, A.L. Tóth, Z.E. Horváth, J. Mihály, C. Balázsi, “Nano-hydroxyapatite preparation from biogenic raw materials”, Central European Journal of Chemistry, vol. 8, pp. 375-381, 2010.
[15] K. Serbetci, S. Orhun, F. Korkusuz, N. Hasırcı, “In Vivo Biocompatibility Of Hydroxyapatite Containing Bone Cement”, Journal of Arthroplasty & Arthroscopic Surgery, vol. 13, pp. 259-263, 2002.
[16] S.M. Zebarjad, S.A. Sajjadi, T.E. Sdrabadi, A. Yaghmaeı, B. Naderi, “A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite”, Scientific Research, vol. 3, pp. 795-801, 2011.
[17] D., Verma, “Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: through molecular control of interfaces”, Ph.D. Thesis, North Dakota State University, North Dakota, USA, 2008. [Online] Avaible: https://www.researchgate.net/publication/238026007_Design_of_polymer-biopolymerhydroxyapatite_biomaterials_for_bone_tissue_engineering_Through_molecular_control_of_interfaces [Accessed May 13, 2020].
[18] A.H. Phakatkar, M.R. Shirdar, M.M. Taheri, S. Narayanan, T. Foroozan, T. Shokuhfar, “Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers”, Materials Science and Enginerring C, vol. 109, no. 11049, pp. 1-10, 2020.
[19] Y. Che, S. Min, M. Wang, M. Rao, C. Quan, “Biological actvity of hydroxyapatite/poly(methylmethacrylate) bone cement wit different surface morphologies and modifications for induced ostogenesis”, Journal of Applied Polymer Science, vol. 48188, pp. 1-8, 2019.
[20] M.A. Ayatollahi, S.A. Mirmohammadi, H.A. Shirazi, “The tension-shear fracture behaviour of polymeric bone cement modified with hydroxiapatite nano-particles”, Archieves of Civil and Mechanical Engineering, vol.18, pp. 50-59, 2018.