TAMAMEN OPTİK MİKROSİSTEMLER İÇİN 180NM CMOS TEKNOLOJİSİNDE TASARLANMIŞ DÜŞÜK GERİLİM BESLEMELİ OSİLATÖRLERİN KARŞILAŞTIRILMASI

Bu çalışmada tamamen optik entegre bir biyomedikal sistem için düşük güç tüketimine ve düşük besleme gerilimine sahip üç temel osilatör bazlı kapasitif ve dirençsel algılama devre yapısı incelenmiş ve bu devreler güç tüketimi, çalışma besleme gerilimi ve çıkış frekansı değerleri göz önüne alınarak karşılaştırılmıştır. Osilatör temelli algılama devrelerinde kullanılan elemanların değerleri 180 nm CMOS (Complementary Metal Oxide Semiconductor - Tamamlayıcı Metal Oksit Yarı İletken) Teknolojisine göre hesaplanmış ve benzetimleri gerçekleştirilmiştir. Ayrıca çıkış frekansının algılayıcı direnç ve kapasite değerine bağlı teorik eşitlikleri türetilmiştir. Halka osilatör devresi ile 0,5 V besleme geriliminde başarılı sonuçlar alınmış ve bu algılayıcının gerilim yükseltici devreler kullanımına ihtiyaç duymadan tek bir tümleşik CMOS fotodiyot ile çalışabilirliği gösterilmiştir.

COMPARISON LOW VOLTAGE OSCILLATORS IN 180NM CMOS TECHNOLOGY FOR ALL-OPTICAL MICROSYSTEMS

In this work, the design and results of three oscillator-based capacitive and resistive sensing circuits with low supply voltage and low power consumption for an optically powered biomedical microsystem are investigated. The oscillator-based sensing circuits are designed and simulated using 180 nm CMOS Technology. In addition, the theoretical relationships of output frequency depending on sensor resistance and capacitance are derived. Moreover, it is also shown that the ring oscillator can work at 0.5 V supply voltage and it can be operated with a single integrated CMOS photodiode without utilizing a voltage doubler circuit.

___

  • [1] K. Agarwal, R. Jegadeesan, Y.X. Guo, and N. Thakor, “Wireless Power Transfer Strategies for Implantable Bioelectronics,” IEEE Reviews in Biomedical Engineering, vol. 10, pp. 136-161, 2017.
  • [2] R. Bashirullah, “Wireless Implants,” IEEE Microwave Magazine, vol. 11, no. 7, pp. 14-23, 2010.
  • [3] P. Bose P, A. Khaleghi, M. Albatat, J. Bergsland, and I. Balasingham, “RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 12, pp. 2798-2807, 2018.
  • [4] P. Gutruf and J.A. Rogers, “Implantable, Wireless Device Platforms for Neuroscience Research,” Current Opinion in Neurobiology, vol. 50, pp. 42-49, 2018.
  • [5] L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li, D. Li, M.S. Humayun, K.K. Shung, J. Zhu, Y. Chen, and Q. Zhou, “Flexible Piezoelectric Ultrasonic Energy Harvester Array for Bio-Implantable Wireless Generator,” Nano Energy, vol. 56, pp. 216-224, 2019.
  • [6] R. Pavelková, D. Vala, and K. Gecová, “Energy Harvesting Systems Using Human Body Motion,” IFAC PapersOnLine, vol.51, no. 6, pp. 36-41, 2018.
  • [7] F. Ali, W. Raza, X. Li, H. Gul, and K.H. Kim, “Piezoelectric Energy Harvesters for Biomedical Applications,” Nano Energy, vol. 57, pp. 879-902, 2019.
  • [8] H.Y. Lee, B. Choi, S. Kim, S.J. Kim, J.W. Bae, and S.W. Kim, “Sensitivity-Enhanced LC Pressure Sensor for Wireless Bladder Pressure Monitoring,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4715-4724, 2016.
  • [9] R. Aragonés, P. Álvarez, J. Oliver, and C. Ferrer, “Comparison of Readout Circuitry Techniques for Data Acquisition in Raw Sensor Systems,” In Proc. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 1252-1257.
  • [10]S. Wang, T.J. Koickal, A. Hamilton, E Mastropaolo, R. Cheung, A. Abel, L.S. Smith, and L. Wang, “A Power Efficient Capacitive Read-Out Circuit with Parasitic-Cancellation for MEMS Cochlea Sensors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 25-37, 2016.
  • [11] C. Brandon, D. Elliott, and K. Moez, “An Ultra Low-Voltage Low-Power Capacitance-to-Digital Converter for Wirelessly Powered Intraocular Pressure Sensor,” IEEE Journal of Radio Frequency Identification, vol. 1, no. 3, pp. 208-218, 2017.
  • [12] N.A. Quadir, L. Albasha, M. Taghadosi, N. Qaddoumi, and B. Hatahet, “Low-Power Implanted Sensor for Orthodontic Bond Failure Diagnosis and Detection,” IEEE Sensors Journal, vol. 18, no. 7, pp. 3003-3009, 2018.
  • [13] Y. Wang, W.L. Goh, J.H. Lee, K.T.C. Chai, and M. Je, “Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18μm CMOS,” World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 7, no. 7, pp. 375-378, 2013.
  • [14] Y.C. Shih, T. Shen, and B.P. Otis, “A 2.3μW Wireless Intraocular Pressure/Temperature Monitor,” In Proc. 2010 IEEE Journal of Solid-State Circuits Conference, 2011, pp. 2592-2601.
  • [15] J.F. Drazan, O.T. Abdoun, M.T. Wassick, R. Dahle, L. Beardslee, G.A. Marcus, N.C. Cady, and E.H. Ledet, “Simple Implantable Wireless Sensor Platform to Measure Pressure and Force,” Medical Engineering & Physics, vol. 59, pp. 81-87, 2018.
  • [16] C.C. Chiang, C.C.K. Lin, and M.S. Ju, “An Implantable Capacitive Pressure Sensor for Biomedical Applications,” Sensors and Actuators A: Physical, vol. 134, no. 2, pp. 382-388, 2007.
  • [17] S.S. Karipott, P.M. Veetil, B.D. Nelson, R.E. Guldberg, and K.G. Ong, “An Embedded Wireless Temperature Sensor for Orthopedic Implants,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1265-1272, 2018.
  • [18] D. Cirmirakis, A. Demosthenous, N. Saeidi, and N. Donaldson, “Humidity-to-Frequency Sensor in CMOS Technology with Wireless Readout,” IEEE Sensors Journal, vol. 13, no. 3, pp. 900-908, 2013.
  • [19] A. Yelkenci and B. Sarioglu, “CMOS optical receiver for low power biomedical microsystems,” In Proc. 25th Signal Processing and Communications Applications Conference (SIU), 2017, pp. 1-4.
  • [20] B. Camli, B. Sarioglu, and A.D. Yalcinkaya, “Photodiodes for Monolithic CMOS Circuit Applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 336-343, 2014.
  • [21] B. Sarioglu, M. Tumer, U. Cindemir, B. Camli, G. Dundar, C. Ozturk, and A.D. Yalcinkaya, “An Optically Powered CMOS Tracking System for 3 T Magnetic Resonance Environment,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 1, pp. 12-20, 2015.
  • [22] E. Ashenafi and M.H. Chowdhury, “Noise Voltage Analysis of Spiral Inductor for On-Chip Buck Converter Design,” In Proc. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-4.
  • [23] Y.D. Gokdel and B. Sarioglu, “Üç Boyutlu Baskı Metodu ile Üretilmiş Dalgalı Yüzeyli Sığal Basınç Algılayıcı,” Düzce University Journal of Science and Technology, vol. 7, no. 3, pp. 1151-1161, 2019.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi