Silika esaslı kayma ile kalınlaşan sıvı emdirilmiş aramid kumaşların darbe ve balistik performansları

Bu çalışma, kayma ile kalınlaşan sıvılar (KKSler) ile işlem görmüş gelişmiş bıçak ve balistik dirençlere sahip aramid kumaş üretimine odaklanmaktadır. KKSler, PEG ve etil alkol içinde silika parçacıklarının homojenleştirilmesi, kurutma ve öğütme aşamaları ile hazırlanmıştır. Reolojik ölçümler, silika nanopartiküllerin PEG'e eklenmesinin, kayma ile kalınlaşma davranışını arttığını göstermiştir. Silika konsantrasyonu arttıkça, partiküller arası kuvvetler artmakta ve bu da partiküller arasındaki sürtünmeyi büyük ölçüde arttıarak KKSlerin gelişmiş bir kayma ile kalınlaştırma özelliğine neden olmaktadır. Yarı statik ve dinamik bıçak direnç testleri, artan kayma ile kalınlaşma tepkisinin, KKS/ aramid hedeflerinde ham aramid kumaşa göre artan bıçak performansına karşılık geldiğini göstermiştir. Balistik test sonuçları, ham aramid kumaş ve STF/aramid hedefler arasındaki balistik dirençte artış olduğunu göstermiştir. Ayrıca, STF/aramid hedeflerin esnekliğinin de ham aramid kumaşa göre önemli bir ölçüde azalmadığı da görülmüştür.

Stab and ballistic performances of aramid fabrics impregnated with silica based shear thickening fluids

This study focuses on the production of aramid fabric with improved stab and ballistic resistances treated with shear thickening fluids (STFs). The STFs were prepared by homogenization of various amount of silica particles within the PEG and ethyl alcohol, drying, and grinding steps. The rheological measurements showed that the addition of silica nanoparticles into the PEG, shear thickening behavior was enhanced. As silica concentration increased, the interparticle forces increased and so the friction between particles greatly increased, causing an enhanced shear-thickening property. Quasi-static and dynamic stab resistance tests showed that increasing shear thickening response corresponded to increased stab performance in the STF/aramid targets as compared to untreated aramid fabric. Ballistic test results showed that there was an increment in the ballistic resistance between untreated fabric and STF/aramid composites. It was also found that the flexibility of STF/aramid targets did not decrease significantly compared to the untreated aramid fabric.

___

  • B.A. Cheeseman, T. A. Bogetti, Ballistic impact into fabric and compliant composite laminates, Composite Structures, 61 (1), 161-173, 2003. https://doi.org/10.1016/S0263-8223(03)00029-1.
  • M. Decker, C. J. Halbach, C. H. Nam, N. J. Wagner, E. D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics, Composites Science and Technology, 67 (3), 565-578, 2007. https://doi.org/10.1016/j.compscitech.2006.08.007.
  • H. M. Rao, M. Hosur, J. Mayo, S. Burton, S. Jeelani, Stab Characterization of Hybrid Ballistic Fabrics, Proceedings of the Annual Society for Experimental Mechanics Conference, pp. 1-4, Albuquerque, New Mexico, USA, 2009.
  • V. B. C. Tan, T. E. Tay, and W. K. Teo, Strengthening fabric armour with silica colloidal suspensions, International Journal of Solids and Structures, 42 (5), 1561-1576, 2005. https://doi.org/10.1016/j.ijsolstr.20 04.08.013.
  • A. Srivastava, A. Majumdar, and B. Butola, Improving the impact resistance of textile structures by using shear thickening fluids: a review, Critical Reviews in Solid State and Materials Sciences, 37 (2), 115-129. 2012. https://doi.org/10.1080/10408436.2011.613493.
  • Y. S. Lee, E. D. Wetzel, and N. J. Wagner, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials Science, 38 (13), 2825-2833, 2003. https://doi.org/10.1023/A:1024424200221.
  • Y. Duan, M. Keefe, T. A. Bogetti, B. Powers, Finite element modeling of transverse impact on a ballistic fabric, International Journal of Mechanical Sciences, 48 (1), 33-43, 2006. https://doi.org/10.1016/j.ijmecsci. 2005.09.007.
  • A. Srivastava, A. Majumdar, and B. S. Butola, Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid, Materials Science and Engineering: A, 529, 224-229, 2011. https://doi.org/10.1016/j.msea.2011.09.021.
  • H. Barnes, Shear‐thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids, Journal of Rheology, 33 (2), 329-366, 1989, https://doi.org/10.1122/1.550017.
  • Y. S. Lee and N. J. Wagner, Dynamic properties of shear thickening colloidal suspensions, Rheologica Acta, 42 (3), 199-208, 2003. https://doi.org/10.1007 /s00397-002-0290-7.
  • T. J. Kang, C. Y. Kim, and K. H. Hong, Rheological behavior of concentrated silica suspension and its application to soft armor, Journal of Applied Polymer Science, 124 (2), 1534-1541, 2012. https://doi.org/10.1 002/app.34843.
  • E. D. Wetzel, Y. S. Lee, R. G. Egres, K. M. Kirkwood, J. E. Kirkwood, and N. J. Wagner, The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites. AIP Conference Proceedings, 712, 288-293, 2004. https://doi.org/10.1063/1.1766538.
  • D. P. Kalman, J. B. Schein, J. M. Houghton, C. H. N. Laufer, E. D. Wetzel, and N. J. Wagner, Polymer dispersion based shear thickening fluid-fabrics for protective applications. Proceedings of SAMPE, pp. 1-9, Baltimore, 2007.
  • N. Kagei, D. Kanie, and M. Kawaguchi, Viscous fingering in shear thickening silica suspensions. Physics of Fluids, 17 (5), 054103, 2005. https://doi.org/10.1063/1.1894407.
  • T. A. Hassan, V. K. Rangari, and S. Jeelani, Sonochemical synthesis and rheological properties of shear thickening silica dispersions, Ultrasonics sonochemistry, 17 (5), 947-952, 2010. https://doi.org/10.1016/j.ultsonch.2010.02.001.
  • J. R. Melrose and R. C. Ball, “Contact networks” in continuously shear thickening colloids, Journal of Rheology, 48 (5), 961-978, 2004. https://doi.org/10.1122/1.1784784.
  • R. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability, Transactions of The Society of Rheology, 16 (1), 155-173, 1972. https://doi.org/10.1122/1.549250.
  • W. H. Boersma, J. Laven, and H. N. Stein, Shear thickening (dilatancy) in concentrated dispersions. AIChE Journal, 36 (3), 321-332, 1990. https://doi.org/10.1002/aic.690360302.
  • N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Physics Today, 62 (10), 27-32, 2009. https://doi.org/10.1063/1.3248476.
  • R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann. 2011.
  • M. J. Decker, C. J. Halbach, C. H. Nam, N. J. Wagner, and E. D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics, Composites Science and Technology, 67 (3), 565-578, 2007. https://doi.org/ 10.1016/j.compscitech.2006.08.007.
  • W. Li, D. Xiong, X. Zhao, L. Sun, and J. Liu, Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Materials & Design, 102, 162-167, 2016. https://doi.org/10.1016/j.matdes.2016.04.006.
  • X. Feng, S. Li, Y. Wang, Y. Wang, and J. Liu, Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids. Materials & Design, 64, 456-461, 2014. https://doi.org/10.1016/j.matdes.2014.06.060.
  • D. P. Kalman, R. L. Merrill, N. J. Wagner, and E. D. Wetzel, Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle− fluid suspensions, ACS Applied Materials & Interfaces, 1 (11), 2602-2612, 2009. https://doi.org/10.1021/am900516w.
  • Standard, N., 0115.00, Stab Resistance of Personal Body Armor. US Department of Justice, Office of Justice Programs, National Institute of Justice, 2000.
  • G. Bossis and J. F. Brady, The rheology of Brownian suspensions. The Journal of Chemical Physics, 91 (3), 1866-1874, 1989. https://doi.org/10.1063/1.457091.
  • J. Bender and N. J. Wagner, Reversible shear thickening in monodisperse and bidisperse colloidal dispersions, Journal of Rheology, 40 (5), 899-916, 1996. https://doi.org/10.1122/1.550767.
  • M. Chellamuthu, E. M. Arndt, and J. P. Rothstein, Extensional rheology of shear-thickening nanoparticle suspensions, Soft Matter, 5 (10), 2117-2124, 2009. https://doi.org/10.1039/B820684H.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: 4
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi
Sayıdaki Diğer Makaleler

Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı

Hasan BAŞAK, Emre KEMER

Evsel katı atık oluşum miktarlarının küresel ve yerel mekânsal otokorelasyon yöntemleri ile incelenmesi

Gülden GÖK, Orhan Atakan GÜRBÜZ

Alçıtaşı üretiminde delme – patlatma yöntemi yerine mekanik kazı yönteminin kullanılabilirliğinin araştırılması

Ramazan ÇOMAKLI

Web sitesi tabanlı oltalama saldırılarının adli analizi

İlker KARA

İnşaat sektöründe oluşan iş değişiklik taleplerini azaltacak bir proje yönetim sistemi önerisi

Betül TEMEL, Gürkan Emre GÜRCANLI, Senem Bilir MAHÇİÇEK

Tabakalararası kayma mukavemeti ve kırılma tokluğu üzerine deneysel bir çalışma: CaCO3 nanoparçacıkları ile iyileştirilmiş karbon fiber takviyeli epoksi kompozitler

Halil Burak KAYBAL

Evsel elektrik ihtiyacının hibrit yenilenebilir enerji sistemleriyle karşılanması: Bursa örneği

Sümeyye ADALI, Melike YALILI KILIÇ

0-500 μA sürekli DC kontrollü dental iyontoforez sistemi tasarımı ve performans incelemes

Serkan DİŞLİTAŞ

Gıdalardan biyoaktif bileşiklerin ekstraksiyonunda derin ötektik çözücülerin kullanımı

Naciye KUTLU, Merve Sılanur YILMAZ, Aslı İŞCİ, Özge ŞAKIYAN

Hibrit kompozitlerin mekanik özelliklerine ve darbe davranışına fonksiyonelleştirilmiş nanokil ilavesinin etkisi

Mehmet Fahri SARAÇ, Ümran ESENDEMİR, Recep ŞİMŞEK