Gıdalardan biyoaktif bileşiklerin ekstraksiyonunda derin ötektik çözücülerin kullanımı

Çevre bilincinin her geçen gün artmasıyla, son yıllarda yeşil teknoloji kavramı daha da önem kazanmıştır. Bu kapsamda, tehlikeli maddelerin üretiminin ve tüketiminin azaltılması, harcanan enerji miktarının indirgenmesi ve yenilenebilir kaynakların kullanımının arttırılması amaçlanmaktadır. Gıda, kimya ve ilaç endüstrisinde yaygın olarak kullanılan geleneksel çözücüler yerine, sağlığa zararı olmayan ve yüksek ekstraksiyon verimine sahip çözücülerin kullanımı önerilmektedir. Yeşil çözücüler, toksik olmayan, geri dönüşümü mümkün olabilen, uçucu olmayan ve sentezi için yüksek maliyet gerektirmeyen çözücülerdir. Su, iyonik sıvılar veya süperkritik akışkanlar en çok kullanılan yeşil çözücülerdendir. Son yıllarda bu çözücülerin yanı sıra, derin ötektik çözücüler bu alanda kendine yer bulmuştur. Derin ötektik çözücülerin fiziksel özellikleri iyonik sıvılara benzer olsa da, kimyasal özellikleri farklıdır. Son yıllarda, derin ötektik çözücüler, gıda materyallerinden biyoaktif bileşiklerin (fenolik bileşik, antosiyanin vb.) ekstraksiyonunda yaygın olarak kullanılmaktadır. Bu çözücüler ile ekstraksiyon veriminde önemli ölçüde artış tespit edilmiştir. Bu derleme, gıdalardan biyoaktif bileşiklerin derin ötektik çözücülerle ekstraksiyonu hakkında çalışmaları irdelemektedir.

Utilization of deep eutectic solvents in the extraction of bioactive compounds from food materials

As the environmental awareness increases, the concept of green technology has gained more importance in recent years. It aims to reduce the production and consumption of hazardous materials, reduce the amount of energy spent and increase the use of renewable resources. It is recommended to use solvents that have non-toxic and high extraction efficiency instead of traditional solvents that are commonly used in the food, chemical and pharmaceutical industries. Green solvents are non-toxic, recyclable, non-volatile and have minimal cost of synthesis. Water, ionic liquids or supercritical fluids are among the most commonly preferred green solvents. In addition to these solvents, deep eutectic solvents took a part in this field in recent years. Although the physical properties of deep eutectic solvents are similar to ionic liquids, their chemical properties are different. In recent years, deep eutectic solvents have been widely used in the extraction of bioactive compounds (phenolic compound, anthocyanin etc.) from food materials. It has been detected a significant increase in extraction efficiency with these solvents. This article reviews the extraction of bioactive compounds from food materials using deep eutectic solvents.

___

  • P. T. Anastas, and J. C. Warner, Green chemistry: Theory and Practice. Oxford University Press Oxford. 1998.
  • M. Poliakoff, and P. Licence, Green chemistry, Nature, vol. 450(6), 810-812, 2007. https://doi.org/10.1038/ 450810a.
  • Y. Marcus, Deep eutectic solvents. Chapter 1: Introduction. Springer Nature Switzerland AG, ISBN: 9783030006075, 2019.
  • L. S. Torres-Valenzuela, A. Ballesteros-Gómez, and S. Rubio, Green solvents for the extraction of high added-value compounds from agri-food waste. Food Engineering Reviews, 12, 83-100, 2020. https://doi. org/10.1007/s12393-019-09206-y.
  • Y. Marcus, Solvent mixtures. Properties and preferential solvation. M. Dekker, New York, ISBN 9780824708375, 2002.
  • A. Loppinet-Serani, C. Aymonier, and F. Cansell, Current and foreseeable applications of süper- critical water for energy and the environment.Chemistry and Sustainability, Emergy and Materials, 1(6), 486–503, 2008. https://doi:10.1002/cssc.200700167.
  • Y. Marcus, Supercritical water. Chapter 1:Introduction. Wiley, New York, ISBN: 9780470889473, 2012.
  • S. P. M. Ventura, F. A. de Silva, M. V. Quental, D. Mondal, M. G. Freire, and J. A. P. Coutinho, Ionic-liquid mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chemical Reviews, 117, 6984–7052, 2017. https://doi. org/10.1021/acs.chemrev.6b00550.
  • P. Dominguez de Maria, Ionic liquids, switchable solvents and eutectic mixtures. In: Green solvents. Elsevier, Amsterdam, p. 533, 2017.
  • H. Passos, M. G. Freire, and J. A. P. Coutinho, Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 16, 4786–4815, 2014. https://doi.org/10.1039/C4GC00236A.
  • E. L. Smith, A. P. Abbott, and K. S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114, 11060–11082, 2014. https:// doi.org/10.1021/cr300162p.
  • D. J. G. P. van Osch, L. F. Zubeir, A. van den Bruinhorst, M. A. A. Rocha, and M. C. Kroon, Hydrophobic deep eutectic solvents as water immiscible extractants. Green Chemistry, 17(9), 4518-4521, 2015. https://doi.org/10.1039/C5GC0 1451D.
  • B. D. Ribeiro, C. Florindo, L. C. Iff, M. A. Z. Coelho, and I. M. Marrucho, Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustainable Chemistry & Engineering, 3(10), 2469-2477, 2015. https://doi. org/10.1021/acssuschemeng.5b00532.
  • Z. Maugeri, and P. Dominguez de Maria, Novel choline-chloride-based Deep eutectic solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Advances, 2(2), 421-425, 2012. https://doi.org/10.1039/C1RA00630D.
  • C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, and I. M. Marrucho, Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chemistry&Engineering, 2,2416–2425, 2014. https://doi.org/10.1021/sc500439w.
  • G. Garcia, M. Atilhan, and S. Aparicio, An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chemical Physics Letters, 634, 151–155, 2015. https://doi.org/10.1016/j.cplett. 2015.06.017.
  • A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 1, 70–71, 2003. https://doi.org/10.1039/B210714G.
  • A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, and E. Raven, Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 9, 868–872, 2007. https://doi.org/10. 1039/B702833D.
  • L. F. Zubeir, M. H. M. Lacroix, and M. C. Kroon, Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. The Journal of Physical Chemistry B, 118, 14429–14441, 2014. https://doi.org/10.1021/jp5089004.
  • G. Garcia, S. Aparicio, R. Ullah, and M. Atilhan, Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels, 29, 2616-2644, 2015. doi.org/10.1021/ef5028873.
  • J. Dai, and R. J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352, 2010. https://doi:10. 3390/molecules15107313.
  • M. S. Jesus, L. F. Ballesteros, R. N. Pereira, Z. Genisheva, A. S. Carvalho, C. Pereira-Wilson, J. A. Teixeira, and L. Domingues, Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chemistry, 2020, https://doi:10.1016/j.foodchem.2020.126298.
  • I. Ignat, I. Volf, and V. I. Popa, A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4), 1821–1835, 2011. https://doi.org/10.1016/j. foodchem.2010.12.026.
  • L. Duan, L. L. Dou, L. Guo, P. Li, and E. H. Liu, Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering, 4(4), 2405–2411, 2016. https://doi.org/10.1021/acssuschemeng. 6b00091.
  • Z. Meng, Z. Jing, D. Hongxia, G. Yuanyuan, and Z. Longshan, Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. Journal of Pharmaceutical and Biomedical Analysis, 161, 246-253, 2018. https://doi:10.1016/j.jpba.2018. 08.048.
  • M. H. Zainal-Abidin, M. Hayyan, A. Hayyan, and N. S. Jayakumar, New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1–23, 2017. https://doi .org/10.1016/j.aca.2017.05.012.
  • M. C. Cvjetko-Bubalo, N. Ćurko, M. Tomašević, K.Kovačević Ganić, and I. Radojčić Redovniković, Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chemistry, 200, 159–166, 2016.doi.org/10.1016/j.foodchem.2016.01.040.
  • N. Altunay, A. Elik, and R. Gürkan, Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior toits spectrophotometric determination. Food Chemistry, 2019. https://doi: 10.1016/j.foodchem.2019. 125933.
  • A. R. Mansur, N. E. Song, H. Won Jang, T. G. Lim, M. Yoo, and T. Gyu Nam, Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chemistry, 2019. https://doi:10.1016/j.foodchem.2019.05. 003.
  • A. Garcia, E. Rodríguez-Juan, G. RodríguezGutiérrez, J. J. Rios, and J. Fernández-Bolaños, Extraction of phenolic compounds from virgin olive oil b deep eutectic solvents (DESs). Food Chemistry, 197, 554–561, 2016. https://doi:10.1016/j.food chem.2015.10.13.
  • X. Peng, M. H. Duan, X. H. Yao, Y. H. Zhang, C. J. Zhao, Y. G. Zu, and Y. J. Fu, Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Separation and Purification Technology, 157, 249–257, 2016. https://doi.org/10. 1016/j.seppur.2015.10.065.
  • Q. Cui, X. Peng, X. H. Yao, Z. F. Wei, M. Luo, W. Wang, C. J. Zhao, Y. J. Fu, and Y. G. Zu, Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Separation and Purification Technology, 150, 63–72, 2015. https://doi.org/10. 1016 /j. seppur.2015.06.026.
  • B. Xia, D. Yan, Y. Bai, J. Xie, Y. Cao, D. Liao, and L. Lin, Determination of phenolic acids in Prunella vulgaris L.: a safe and green extraction method using alcohol-based deep eutectic solvents. Analytical Methods, 7(21), 9354–9364, 2015. https://doi.org/10. 1039/C5AY02035B.
  • Y. Huang, F. Feng, J. Jiang, Y. Qiao, T. Wu, J. Voglmeir, and Z. G. Chen, Green and efficient extraction of rutin from Tartary buckwheat hull by using natural deep eutectic solvents. Food Chemistry, 221, 1400–1405, 2017. https://doi.org/10.1016/j. foodchem.2016.11.013.
  • E. Bağda, H. Altundağ, and M. Soylak, Highly simple deep eutectic solvent extraction of manganese in vegetable samples prior to ıts ICP-OES analysis. Biological Trace Element Research, 179(2), 334–339, 2017. https://doi.org/10.1007/ s12011-017-0967-5.
  • C. G. González, N. R. Mustafa, E. G. Wilson, R. Verpoorte, and Y. H. Choi, Application of natural deep eutectic solvents for the green extraction of vanillin from vanilla pods. Flavour and Fragrance Journal, 33(1), 91–96, 2017. https://doi.org/10.1002 /ffj.3425.
  • M. W. Nam, J. Zhao, M. S. Lee, J. H. Jeong, and J. Lee, Enhanced extraction of bioactive naturalproducts using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chemistry, 17(3), 1718–1727, 2015. https://doi.org/10. 1039/C4GC01556H.
  • E. Kurtulbaş, A. G. Pekel, M. Bilgin, D. P. Makris, and S. Şahin, Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 2020. https://doi:10.1007/s13399-020-00606-3.
  • M. Wang, J. Wang, Y. Zhou, M. Zhang, Q. Xia, W. Bi, and D. D. Y. Chen, Ecofriendly mechano-chemical extraction of bioactive compounds from plants with deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 5(7), 6297–6303, 2017. https://doi.org/ 10.1021/acssuschemeng.7b01378.
  • Y. L. Kua, and S. Gan, Natural deep eutectic solvent (NADES) as a greener alternative for the extraction of hydrophilic (polar) and lipophilic (non-polar) phytonutrients. Key Engineering Materials, 797, 20–28, 2019. https://doi.org/10.4028/www.scientific.net/ KEM.797.20.
  • S. C. Cunha, and J. O. Fernandes, Extraction techniques with deep eutectic solvents. TrAC Trens in Analytical Chemistry, 105, 225–239, 2018. https://doi.org/10. 1016/j.trac.2018.05.001.
  • T. Bosiljkov, F. Dujmić, M. Cvjetko Bubalo, J. Hribar, R. Vidrih, M. Brnčić, E. Zlatic, I. R. Redovniković, and S. Jokić, Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food and Bioproducts Processing, 102, 195–203, 2017. https://doi.org/10. 1016/j. fbp.2016.12.005.
  • H. Zhang, B. Tang, and K. Row, Extraction of catechin compounds from green tea with a new green solvent. Chemical Research in Chinese Universities, 30(1), 37–41, 2014. https://doi:10.1007/s40242-014-3339-0.
  • P. Zhou, X. Wang, P. Liu, J. Huang, C. Wang, M. Pan, and Z. Kuang, Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Industrial Crops and Products, 120, 147–154,2018. https://doi.org/10.1016/j.indcrop.2018.04.071.
  • Y. H. Hsieh, Y. Li, Z. Pan, Z. Chen, J. Lu, J. Yuan, Z. Zhu, and J. Zhang, Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger. Ultrasonics Sonochemistry, 2019. https://doi.org/10.1016/j. ultsonch.2019.104915.
  • J. Li, Z. Han, Y. Zou, and B. Yu, Efficient extraction of major catechins in Camellia sinensis leaves using green choline chloride-based deep eutectic solvents. RSC Advances, 5(114), 93937–93944, 2015. doi.org/10. 1039/C5RA15830C.
  • L. Zhang, and M. Wang, Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules, 95, 675–681, 2017. https://doi.org/10.1016/j.ijbiomac. 2016.11.096.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi
Sayıdaki Diğer Makaleler

SBR sisteminin antibiyotik (tetrasiklin/klortetrasiklin) ve ağrı kesici (parasetamol) etkisinde nitrifikasyon ve denitrifikasyon performansının belirlenmesi

Aytekin ÇELİK

Gıdalardan biyoaktif bileşiklerin ekstraksiyonunda derin ötektik çözücülerin kullanımı

Naciye KUTLU, Merve Sılanur YILMAZ, Aslı İŞCİ, Özge ŞAKIYAN

5xxx serisi alüminyum alaşımları için Yoshida Uemori model parametrelerinin Arı Algoritması ve Genetik Algoritma ile tahmini

Habip Gökay KORKMAZ, Serkan TOROS, Mete KALYONCU

Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi

Korkut AÇIKALIN, Gözde GÖZKE

Tabakalararası kayma mukavemeti ve kırılma tokluğu üzerine deneysel bir çalışma: CaCO3 nanoparçacıkları ile iyileştirilmiş karbon fiber takviyeli epoksi kompozitler

Halil Burak KAYBAL

Elektrik ark ocağı ile üretim yapan bir demir-çelik tesisinin mevcut en iyi teknikler kapsamında değerlendirilmesi

Gülizar GÖKCECİK, Hakan DULKADİROĞLU

Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı

Baki BAĞRIAÇIK, Fatıma Masume USLU, Esra Sunduz YİĞİTTEKİN, Anıl DELİK, Sadık DİNÇER

Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü

Yunus Emre ALTINIŞIK, Rıdvan DEMİR, Murat BARUT

Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması

Fuat ÖZYONA, Ömür GÖKKUŞ

CETP kompozitlerin ağaç matkabıyla delinme performanslarının deneysel incelenmesi

Murat KOYUNBAKAN, Ali ÜNÜVAR, Volkan ESKİZEYBEK, Ahmet AVCI