Mutfak atıklarının bahçe tipi kompostlaştırma sistemleri ile kaynağında yönetimi

Yapılan çalışmada yemek hazırlama aşamasında oluşan mutfak atıklarının bahçe tipi basit sistemlerle kompostlaştırılması incelenmiştir. Bu kapsamda boyutları 0.7m x 0.7m x 1.1m (R1) ve 0.6m x 0.6m x 1.1m (R2) olan iki adet reaktör kurulmuş ve 7 hafta müddetince işletilmiştir. Çalışma sonunda, reaktörlerdeki sıcaklık profili incelendiğinde R1 reaktörü için ölçülen en yüksek sıcaklık 50⁰C olurken, R2 reaktöründe gözlemlenen azami sıcaklık 70⁰C civarında olmuştur. Nihai üründeki pH değeri her bir reaktör için ~8.85 olurken, elektriksel iletkenlik (Eİ) değerleri R1 ve R2 reaktörleri için sırasıyla 1.58 ve 2.17 dS/m olmuştur. Elde edilen kompostta, R1 ile R2 reaktörleri için karbon/azot (C/N) oranları sırasıyla 30 ve 25 olmuşken, (C/N)son/(C/N)başlangıç değerleri ise sırasıyla 0.70 ve 0.56 olarak bulunmuştur. Hesaplanan C/N oranları kararlı bir kompost için bir miktar yüksek olmakla beraber (>20), (C/N)son/(C/N)başlangıç değerleri elde edilen ürünün kararlı sayılabileceğini göstermiştir. Nihai su muhtevası oranı R1 reaktöründen elde edilen kompost için %65, R2 reaktöründen elde edilen kompost için ise %74 olmuştur. Son üründeki uçucu katı madde/toplam katı madde (UKM/TKM) oranı ise R1 ve R2 reaktörleri için sırasıyla %70 ve %73 olarak gerçekleşmiştir. Yapılan çalışmaya göre, bahçe tipi kompostlaştırma sistemlerinin genel bir özelliği sayılabilecek uzun bekletme sürelerinin de yardımıyla elde edilen kompostun patojenler açısından zararsız ve arazide uygulanabilir faydalı bir ürün olabileceği sonucuna varılmıştır.

Kitchen waste management at source by yard composting systems

In the study, the composting of kitchen wastes generated during the meal preparation stage with yard-type simple systems was investigated. In this context, two reactors with dimensions of 0.7m x 0.7m x 1.1m (R1) and 0.6m x 0.6m x 1.1m (R2) were installed and operated for 7 weeks. At the end of the study, when the temperature profile in the reactors was examined, the highest temperature measured for the R1 reactor was 50⁰C, while the maximum temperature observed in the R2 reactor was around 70⁰C. While the pH value in the final product was ~8.85 for both reactors, the electrical conductivity values were 1.58 and 2.17 dS/m for the R1 and R2 reactors, respectively. In the compost obtained, the carbon/nitrogen (C/N) ratios for the R1 and R2 reactors were 30 and 25, respectively, while the (C/N)final/(C/N)initial values were found to be 0.70 and 0.56, respectively. Although the calculated C/N ratios are somewhat elevated for a stable compost (>20), (C/N)final/(C/N)initial values indicated that the obtained product can be considered stable. The final water content ratio was 65% for the compost obtained from the R1 reactor and 74% for the compost from the R2 reactor. The volatile solids/total solids (VS/TS) ratio in the final product was 70% and 73% for the R1 and R2 reactors, respectively. According to the study, it was concluded that the compost obtained with the help of long residence times, which can be considered a general characteristic of yard-type composting systems, can be a beneficial product that is harmless in terms of pathogens and can be applied in the field.

___

  • L.A. Guerrero, G. Maas, W. Hogland. Solid waste management challenges for cities in developing countries. Waste Manag, 33, 220-32, 2013. http://dx.doi.org/10.1016/j.wasman.2012.09.008.
  • W. Peng, A. Pivato. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste and Biomass Valorization, 10, 465-81, 2017. https://doi.org/10.1007/s12649-017-0071-2.
  • T.P. Pham, R. Kaushik, G.K. Parshetti, R. Mahmood, R. Balasubramanian. Food waste-to-energy conversion technologies: current status and future directions. Waste Manag, 38, 399-408, 2015. http://dx.doi.org/10.1016/j.wasman.2014.12.004.
  • H. Gülşen, M. Turan. Katı atık depolama alanı sızıntı sularının Anaerobik Akışkan Yataklı Reaktör’de arıtılabilirliği. İTÜ Dergisi, 19, 74-84, 2009.
  • H. Gülşen, M. Turan. Anaerobic Treatability of Sanitary Landll Leachate in a Fluidized Bed Reactor. Turkish J Eng Env Sci, 28, 297 – 305, 2004.
  • H. Gulsen, M. Turan, B. Armagan. Anaerobic fluidized bed reactor for the treatment of landfill leachates. J Environ Sci Health A Tox Hazard Subst Environ Eng, 39, 2195-204, 2004. https://doi.org/10.1081/ESE-120039384.
  • M.A. Barlaz, J.P. Chanton, R.B. Green. Controls on Landfill Gas Collection Efficiency: Instantaneous and Lifetime Performance. Journal of the Air & Waste Management Association, 59, 1399-404, 2012. https://doi.org/10.3155/1047-3289.59.12.1399.
  • H. Fisgativa, A. Tremier, P. Dabert. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag, 50, 264-74, 2016. http://dx.doi.org/10.1016/j.wasman.2016.01.041.
  • N.B. Thi, G. Kumar, C.Y. Lin. An overview of food waste management in developing countries: Current status and future perspective. J Environ Manage, 157, 220-9, 2015. http://dx.doi.org/10.1016/j.jenvman.2015.04.022.
  • Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Official Journal of the European Communities, L, 182, 0001-0019, 1999.
  • Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. Official Journal of the European Union, L, 150, 100-108 (14.06.2018), 2018.
  • Atıkların Düzenli Depolanmasına Dair Yönetmelik. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, 27533 sayılı Resmi Gazete, 2010.
  • Atıkların Düzenli Depolanmasına Dair Yönetmelikte Değişiklik Yapılmasına Dair Yönetmelik. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, 30990 sayılı Resmi Gazete, 2019.
  • Y. Ma, Y. Yin, Y. Liu. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery. Bioresour Technol, 228, 56-61, 2017. http://dx.doi.org/10.1016/j.biortech.2016. 12.090.
  • L. Li, X. Peng, X. Wang, D. Wu. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour Technol, 248, 20-8, 2018. http://dx.doi.org/10.1016/j.biortech.2017.07.012.
  • P.K. Pandey, V. Vaddella, W. Cao, S. Biswas, C. Chiu, S. Hunter. In-vessel composting system for converting food and green wastes into pathogen free soil amendment for sustainable agriculture. Journal of Cleaner Production, 139, 407-15, 2016. http://dx.doi.org/10.1016/j.jclepro.2016.08.034.
  • Y. Wei, Y. Zhao, B. Xi, Z. Wei, X. Li, Z. Cao. Changes in phosphorus fractions during organic wastes composting from different sources. Bioresour Technol, 189, 349-56, 2015. http://dx.doi.org/10.1016/ j.jenvman.2015.04.022.
  • D. Karadag, B. Özkaya, E. Ölmez, M.E. Nissilä, M. Çakmakçı, Ş. Yıldız, et al. Profiling of bacterial community in a full-scale aerobic composting plant. International Biodeterioration & Biodegradation, 77, 85-90, 2013. http://dx.doi.org/10.1016/j.ibiod. 2012.10.011.
  • G. Kanat, A. Demir, B. Ozkaya, M. Sinan Bilgili. Addressing the operational problems in a composting and recycling plant. Waste Manag, 26, 1384-91, 2006. https://doi.org/10.1016/j.wasman.2005.12.010.
  • Y.-T. Chen. A Cost Analysis of Food Waste Composting in Taiwan. Sustainability, 8, 2016. https://doi.org/10.3390/su8111210.
  • J. Faverial, J. Sierra. Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe (French Antilles). Journal of Cleaner Production, 83, 238-44, 2014. http://dx.doi.org/ 10.1016/j.jclepro.2014.07.068.
  • R. Barrena, X. Font, X. Gabarrell, A. Sanchez. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability. Waste Manag, 34, 1109-16, 2014. http://dx.doi.org/10.1016/j.wasman.2014.02.008.
  • T. Lleó, E. Albacete, R. Barrena, X. Font, A. Artola, A. Sánchez. Home and vermicomposting as sustainable options for biowaste management. Journal of Cleaner Production, 47, 70-6, 2013. http://dx.doi.org/10.1016/ j.jclepro.2012.08.011.
  • Z. Li, H. Lu, L. Ren, L. He. Experimental and modeling approaches for food waste composting: a review. Chemosphere, 93, 1247-57, 2013. http://dx.doi.org/10.1016/j.chemosphere.2013.06.064.
  • M.K. Manu, R. Kumar, A. Garg. Decentralized composting of household wet biodegradable waste in plastic drums: Effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production, 226, 233-41, 2019. https://doi.org/10.1016/j.jclepro.2019.03.350.
  • Meteoroloji Genel Müdürlüğü İllerimize Ait Genel İstatistik Verileri. (2023). Erişim Tarihi: 20.04.2023. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=%C4%B0STANBUL/FLORYA.
  • S. Hemidat, M. Jaar, A. Nassour, M. Nelles. Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9, 2257-74, 2018. https://doi.org/10.1007/s12649-018-0197-x.
  • Test Methods for the Examination of Composting and Composts (TMECC). Wayne Thompson, the US Composting Council, US Government Printing Office 2002.
  • B. Hellmann, L. Zelles, A. Palojarvi, Q. Bai. Emission of Climate-Relevant Trace Gases and Suc-cession of Microbial Communities during Open-Windrow Composting. Applied and Environmental Microbiology, 63(3), 1011-8, 1997. https://doi.org/10.1128/aem.63.3.1011-1018.1997.
  • F. Storino, J.S. Arizmendiarrieta, I. Irigoyen, J. Muro, P.M. Aparicio-Tejo. Meat waste as feedstock for home composting: Effects on the process and quality of compost. Waste Manag, 56, 53-62, 2016. http://dx.doi.org/10.1016/j.wasman.2016.07.004.
  • K.M. Wichuk, D. McCartney. A review of the effectiveness of current time–temperature regulations on pathogen inactivation during composting. Journal of Environmental Engineering and Science, 6, 573-86, 2007. https://doi.org/10.1139/S07-011.
  • F. Abbasi, M. Mokhtari, M. Jalili. The impact of agricultural and green waste treatments on compost quality of dewatered sludge. Environ Sci Pollut Res Int, 26, 35757-66, 2019. https://doi.org/10.1007/s11356-019-06618-5.
  • C. Sun, Y. Wei, J. Kou, Z. Han, Q. Shi, L. Liu, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting. Journal of Cleaner Production, 299, 2021. https://doi.org/ 10.1016/j.jclepro.2021.126928.
  • E. Madejon, M. Jesus Diaz, R. Lopez, F. Cabrera. New approaches to establish optimum moisture content for compostable materials. Bioresour Technol, 85, 73-8, 2002. https://doi.org/10.1016/S0960-8524(02)00030-5.
  • E.I. Arslan, U. İpek, E. Öbek, M. Topal. In-Vessel Composting: II. Grass Clippings. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 14, 47-56, 2009.
  • W. Namkoong, E.-Y. Hwang, J.-G. Cheong, J.-Y. Choi. A Comparative Evaluation of Maturity Parameters for Food Waste Composting. Compost Science & Utilization, 7, 55-62, 1999. https://doi.org/10.1080/ 1065657X.1999.10701964.
  • İ. Özturk, İ. Demir, M. Altınbaş, O.A. Arıkan. Kompost El Kitabı. İSTAÇ Teknik Kitaplar Serisi, İstanbul 2015.
  • O.A. Arıkan, İ. Öztürk. Arıtma çamuru kompostlaştırılmasında organik evsel katı atık ilavesinin etkisi. İTÜ Dergisi, 4, 15-24, 2005.
  • K. Ekinci, C. Soyöz, B. Kumbul, R. Yildirim, Ş. Yazici, H. Rüzgar. Nar Kabuklarının Döner Tambur Kompostlama Sisteminde Biyoaktivatör İle Kompostlanması. European Journal of Science and Technology, 2021. https://doi.org/10.31590/ejosat. 908927.
  • M. Sakarika, M. Spiller, R. Baetens, G. Donies, J. Vanderstuyf, K. Vinck, et al. Proof of concept of high-rate decentralized pre-composting of kitchen waste: Optimizing design and operation of a novel drum reactor. Waste Management, 91, 20-32, 2019. https://doi.org/10.1016/j.wasman.2019.04.049.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi