Mikrodalga’da kurutulan sarımsağın (Allium sativum L.) rehidrasyon oranı, renk değerleri ve kurutma kinetiğinin incelenmesi

Bu araştırmada, dört farklı mikrodalga gücünde (300W, 450W, 600W ve 700W) kurutulan sarımsak dilimlerinin renk değerleri ve rehidrasyon oranları tespit edilmiştir. Kurutma kinetiği için ince tabak kurutma modelleri kullanılmıştır. Taze sarımsak dilimlerine göre mikrodalgada kurutulan sarımsakların L* ve b* değerlerinin daha düşük, a* değerlerinin ise daha yüksek olduğu belirlenmiştir. Taze sarımsağa göre, mikrodalga gücü arttıkça sarımsakların C* (kroma) ve h (hue açısı) değerlerinin düştüğü görülmüştür. Artan mikrodalga gücü ile rehidrasyon oranının belirgin bir şekilde azaldığı saptanmıştır. Bu nedenle, en yüksek rehidrasyon oranı 300W uygulanan sarımsak örneklerinde tespit edilmiştir. Yapılan mikrodalga kurutma sonucunda hesaplanan zamana karşı nem oranı (MR) verileri literatürde bulunan 5 (Lewis, Page, Henderson ve Pabis, Midilli ve ark. ve Logaritmic) kurutma modeli ile karşılaştırılmıştır. Kuru sarımsak örneklerinin SPSS ve nonlinear regrasyon analizleri ile R2 (belirtme katsayısı), χ2 (ki kare) ve RMSE (hataların karelerinin karekök ortalamaları) hesaplanmıştır. En yüksek R2 (0.994-0.998), en düşük RMSE (0.016-0.022) ve χ2 (0.00033-0.00064) değerlerinin Lewis modeline ait olduğu belirlenmiştir.

Examination of rehydration ratio, color properties and drying kinetics of microwave dried garlic (Allium sativum L.)

In this study, color values and rehydration ratios of dried garlic slices at four different microwave power (300W, 450W, 600W, and 700W) were determined. Thin-layer drying models were used for drying kinetics. It was determined that L* and b* values were lower and a* values were higher in microwave-dried garlic compared to fresh garlic slices. It was observed that the C* (Chroma) and h (hue angle) values of garlic decreased as the microwave power increased compared to fresh garlic. It was determined that the rehydration ratio decreased significantly with increasing microwave power. Therefore, the highest rehydration ratio was detected in the garlic samples applied at 300W. Moisture ratio (MR) versus time calculated as a result of microwave drying was compared with 5 (Lewis, Page, Henderson, and Pabis, Midilli et al. and Logarithmic) drying models in the literature. R2 (coefficient of expression), χ2 (chi-square), and RMSE (root mean square error) were calculated by SPSS and nonlinear regression analysis of dried garlic samples. It was determined that the highest R2 (0.994-0.998), the lowest RMSE (0.016-0.022) and χ2 (0.00033-0.00064) values belonged to the Lewis model.

___

  • M. Younis, D. Abdelkarim, and A. El-Abdein, Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25, 332–338, 2018. http://dx.doi.org/10.1016/j.sjbs.2017. 06.011.
  • C. Condurso, F. Cinnotta, G. Tripodi, M. Merlino, and A. Verzera, Influence of drying technologies on the aroma of Sicilian red garlic. LWT - Food Science and Technology, 104, 180–185, 2019. https://doi.org/ 10.1016/j.lwt.2019.01.026.
  • Y. Feng, C. Zhou, A. Yagoub, Sun, Y. Sun, P. Owusu-Ansah, X. Yu, X. Wang, X. Xu, J. Zhang, and Z. Ren, Improvement of the catalytic infrared drying process and quality characteristics of the dried garlic slices by ultrasound-assisted alcohol pretreatment. LWT - Food Science and Technology, 116, 108577, 2019. https://doi.org/10.1016/j.lwt.2019.108577.
  • C. Zhou, Y. Feng, L Zhang., A. Yagoub, H.Wahia, H. Ma, Y. Sun, and X. Yu, Rehydration characteristics of vacuum freeze- and hot air-dried garlic slices. LWT - Food Science and Technology, 143, 111158, 2021. https://doi.org/10.1016/j.lwt.2021.111158.
  • Y. Ling, Q. Li, H. Zheng, M. Omran, L. Gao, K. Li and G. Chen, Drying kinetics and microstructure evolution of nano-zirconia under microwave pretreatment. Ceramics International, 47, 22530–22539, 2021. https://doi.org/ 10.1016/j.ceramint.2021.04.263.
  • L. Shen, Y. Zhu, C. Liu, L. Wang, H. Liu, M. Kamruzzaman, C. Liu, Y. Zhang and Zheng, X. Zheng, Modelling of moving drying process and analysis of drying characteristics for germinated brown rice under continuous microwave drying. Biosystem Engineering, 195, 64-88, 2020. https://doi.org/10.1016/ j.biosystemseng.2020.05.002.
  • A. Moreno, A. J. Aguirre, R. H. Maqueda, G. Jimenez, and C.T. Mino, Effect of temperature on the microwave drying process and the viability of amaranth seeds. Biosystem Engineering, 215, 49-66, 2022. https://doi.org/10.1016/j.biosystemseng.2021.12.019.
  • G. R. Carvalho, R. L. Monteiro, J. B. Laurindo and P. Auugusto, Microwave and microwave-vacuum drying as alternatives to convective drying in barley malt processing. Innovative Food Science and Emerging Technologies, 73, 102770, 2021. https://doi.org/ 10.1016/j.ifset.2021.102770.
  • W. K. Lewis, The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432, 1921.
  • G. E. Page, Factors influencing the maximum rate of air drying shelled corn in thin-layers. MSc Thesis, Purdue University, West Lafayette, 1949.
  • S. M. Henderson, and. Pabis, Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174, 1961.
  • A. Midilli, H. Küçük, and Z. Yapar, A new model for single-layer drying. drying technology, 20, 1503-1513, 2002.
  • İ. Doymaz, Drying of eggplant slices in thin layers at different air temperatures. Journal of Food Process Preservation, 35, 280-289, 2011. http://doi:10.1111/ j.1745-4549.2009.00454.x.
  • İ. Doymaz, and O. Ismail, Experimental characterization and modelling of drying of pear slices. Food Science and Biotechnology, 21(5), 1377–1381, 2012. https://10.1007/ s10068-012-0181-3.
  • E. S. Kırmızıkaya, İ. Çınar, Halojen isıtıcılı kurutucuda kurutma sıcaklığının beyaz şapkalı mantarının (agaricus bisporus) kuruma süresi ve rehidrasyon oranına etkisi. MANTAR DERGİSİ/The Journal of Fungus, 172- 179, 2019. https://10.30708.mantar.639359.
  • G. İzli, Farklı kurutma uygulamalarının armut meyvesinin bazı kalite özellikleri üzerine etkileri. Türk Tarım-Gıda Bilimi Teknolojisi Dergisi, 6(4): 479-485, 2018. https://doi.org/10.24925/turjaf.v6i4.479-485.1800.
  • S. Günaydın, Mikrodalga, konvektif ve gölgede kurutma yöntemleri kullanilarak kurutulmuş kuşburnu meyvesinin kurutma kinetiği, renk ve besin elementi içeriği açisindan incelenmesi, Yüksek Lisans Tezi, Bursa Uludağ Üniveristesi, Türkiye, 2020.
  • A. Özkan-Karabacak, Farkli yöntemlerle kurutulan havuç pestillerinin kurutma karakteristikleri ile bazi kalite parametrelerindeki değişimin modellenmesi ve in vitro biyoyararliliklarinin belirlenmesi, Doktora Tezi, Bursa Uludağ Üniveristesi, Türkiye, 2021.
  • Ç. Hanmammadli , Mikrodalga yöntemiyle bazi mantar çeşitlerinin kurutulmasinda kurutma parametrelerinin belirlenmesi, Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Türkiye, 2020.
  • İ. Doymaz, and C. Aktaş, Determination of drying and rehydration characteristics of eggplant slices. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 833-841, 2018. https://10.17341/ gazimmfd.416386.
  • N. Kutlu, A İşçi., and Ö. Demirkol-Şakıyan , Gıdalarda ince tabaka kurutma modelleri. GIDA, 40(1): p. 39-46, 2015. https://10.15237/gida.GD14031.
  • I. İlter , S. Akyıl, E. Devseren, D. Okut, M. Koç, and F. Kaymak-Ertekin, Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54, 2101–2112, 2018. https://doi.org/10.1007/s00231-018-2294-6.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi