Küresel iklim model verilerinin farklı yöntemlerle ayrıştırılması ve geleceğe yönelik yağış tahminlerinin yapılması

Küresel iklim değişikliği, her geçen gün Dünya genelinde daha fazla etkisini artırarak tehlikeli sonuçlara neden olmaktadır. Özellikle iklim değişikliği kaynaklı şiddetli yağışlar, sel felaketlerine yol açmaktadır. Bu sel olayları, can kaybına ve maddi hasara neden olabilmektedir. Bu nedenle, çeşitli önleyici çalışmalar yürütülmektedir. Bu çalışmalardan biri, Yağış Şiddeti-Süre-Frekans (IDF) eğrilerinin oluşturulmasıdır. Ancak bu eğriler genellikle geçmiş tarihsel verilere dayandığından, gelecek için kullanılmaları uygun görülmemektedir. Bu nedenle, bu çalışmada iklim modeli verileri ve ayrıştırılmış yağış verileri kullanılarak iklim değişikliğini de içeren geleceğe yönelik yeni IDF eğrileri elde etmek için farklı yöntemler kullanılmıştır.

Disaggeration of global climate model data using different methods and predicting future precipitation

Climate change affects the world with increasing severity, leading to dangerous consequences. Global Climate change is increasing its effects worldwide every day and causing dangerous consequences. Especially, intense rainfall events caused by climate change lead to flooding disasters. These flooding events can result in loss of life and property damage. Therefore, various preventive measures are being implemented. One of these measures is the development of Intensity-Duration-Frequency (IDF) curves. However, since these curves are usually based on past historical data, they are not considered suitable for future use. For this reason, in this study, different methods were used to derive new IDF curves for the future, which include climate change, by using climate model data and disaggregated precipitation data.

___

  • J. T. S. Pedersen, D. van Vuuren, J. Gupta, F. D. Santos, J. Edmonds, and R. Swart, IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022?. Global Environmental Change,75, 2022.https://doi.org/10.1016/j.gloenvcha.2022.102538
  • D. de Haas and J. Andrews, Nitrous oxide emissions from wastewater treatment - Revisiting the IPCC 2019 refinement guidelines. Environmental Challenges, 8, 2022. https://doi.org/10.1016/j.envc.2022.100557
  • J. P. Palutikof et al., Enhancing the review process in global environmental assessments: The case of the IPCC, Environ Sci Policy, 139, 118–129, 2023. https://doi.org/10.1016/j.envsci.2022.10.012
  • C. Howarth and D. Viner, Integrating adaptation practice in assessments of climate change science: The case of IPCC Working Group II reports, Environ Sci Policy, 135, 1–5, Sep. 2022. https://doi.org/10.1016/ j.envsci.2022.04.009
  • S. Colombini et al., Evaluation of Intergovernmental Panel on Climate Change (IPCC) equations to predict enteric methane emission from lactating cows fed Mediterranean diets, JDS Communications, 2023. https://doi.org/10.3168/jdsc.2022-0240
  • F. Gogien, M. Dechesne, R. Martinerie, and G. Lipeme Kouyi, Assessing the impact of climate change on Combined Sewer Overflows based on small time step future rainfall timeseries and long-term continuous sewer network modelling. Water Res, 230, 2023. https://doi.org/10.1016/j.watres.2013.07.037
  • A. D. Polasky, J. L. Evans, and J. D. Fuentes, CCdownscaling: A Python package for multivariable statistical climate model downscaling. Environmental Modelling & Software, 165, 105712, 2023. https://doi.org/10.1016/j.envsoft.2023.105712.
  • T. A. Demissie, Impact of climate change on hydrologic components using CORDEX Africa climate model in Gilgel Gibe 1 watershed Ethiopia. Heliyon, 9(6), 2023. https://doi.org/ 10.1016/j.heliyon.2023.e16701.
  • E. Sá et al., Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. Atmos Environ, 131, 209–224, 2016. https://doi.org/10.1016/j.atmosenv.2016.01.040
  • C. Klausbruckner, H. Annegarn, L. R. F. Henneman, and P. Rafaj, A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies. Environ Sci Policy, 57, 70–78, 2016. https://doi.org/10.1016/ j.envsci.2015.12.001
  • F. J. Sierro et al., Phase relationship between sea level and abrupt climate change. Quat Sci Rev, 28(25-26), 2867–2881, 2009. https://doi.org/10.1016/ j.quascirev.2009.07.019
  • T. Bardají et al., Sea level and climate changes during OIS 5e in the Western Mediterranean. Geomorphology, 104(1-2), 22–37, 2009. https://doi.org/10.1016/ j.geomorph.2008.05.027
  • Z. Duan, Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. J Clean Prod, 395, 2023. https://doi.org/10.1016/ j.jclepro.2023.136446
  • C. Franco et al., Key predictors of greenhouse gas emissions for cities committing to mitigate and adapt to climate change. Cities, 137, 104342, Jun. 2023. https://doi.org/10.1016/j.cities.2020.103044
  • M. M. Ismail, I. Dincer, Y. Bicer, and M. Z. Saghir, Effect of using phase change materials on thermal performance of passive solar greenhouses in cold climates. International Journal of Thermofluids, 19, 100380, 2023. https://doi.org/10.1016/ j.ijft.2023.100380
  • S. Ferrier, T. D. Harwood, C. Ware, and A. J. Hoskins, A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol Indic, 117, 2020. https://doi.org/10.1016/j.ecolind.2020.106554
  • A. C. de Souza and J. A. Prevedello, Climate change and biological invasion as additional threats to an imperiled palm. Perspect Ecol Conserv, 19(2), 216–224, Apr. 2021. https://doi.org/10.1016/ j.pecon.2021.02.003
  • S. Worischka, F. Schöll, C. Winkelmann, and T. Petzoldt, Twenty-eight years of ecosystem recovery and destabilisation: Impacts of biological invasions and climate change on a temperate river. Science of the Total Environment, 875, 2023. https://doi.org/10.1016/j.scitotenv.2018.07.424
  • A. K. Alhamid, M. Akiyama, H. Ishibashi, K. Aoki, S. Koshimura, and D. M. Frangopol, Framework for probabilistic tsunami hazard assessment considering the effects of sea-level rise due to climate change. Structural Safety, 94, 2022. https://doi.org/10.1016/j.strusafe.2021.102152
  • N. Spencer, E. Strobl, and A. Campbell, Sea level rise under climate change: Implications for beach tourism in the Caribbean. Ocean Coast Manag, 225, 2022. https://doi.org/10.1016/j.ocecoaman.2022.106207
  • X. Yu, L. Luo, P. Hu, X. Tu, X. Chen, and J. Wei, Impacts of sea-level rise on groundwater inundation and river floods under changing climate. J Hydrol (Amst), 614, 2022. https://doi.org/10.1016/ j.jhydrol.2014.02.051
  • S. Létourneau et al., Climate change and health in medical school curricula: A national survey of medical students’ experiences, attitudes and interests. Journal of Climate Change and Health, 11, 2023. https://doi.org/10.1016/j.joclim.2023.100226
  • J. Alford, A. Massazza, N. R. Jennings, and E. Lawrance, Developing global recommendations for action on climate change and mental health across sectors: A Delphi-style study. The Journal of Climate Change and Health, 12, 100252, 2023. https://doi.org/10.1016/j.joclim.2023.100252
  • R. Alibudbud, Mental Health Service, Training, Promotion, and Research during Typhoons: Climate Change Experiences from the Philippines. Asian J Psychiatr, 103673, 2023. https://doi.org/10.1016/ j.ajp.2023.103673
  • B. Lin and H. Zhao, Tracking policy uncertainty under climate change. Resources Policy, 83, 2023. https://doi.org/10.1016/j.resourpol.2023.103699.
  • M. Chaikumbung, The effects of institutions and cultures on people’s willingness to pay for climate change policies: A meta-regression analysis. Energy Policy. 177, 113513, 2023. https://doi.org/10.1016/j.enpol.2023.113513
  • D. Furceri, M. Ganslmeier, and J. Ostry, Are climate change policies politically costly?. Energy Policy, 178, 2023. https://doi.org/10.1016/ j.enpol.2023.113575
  • S. Moghanlo et al., Using artificial neural networks to model the impacts of climate change on dust phenomenon in the Zanjan region, north-west Iran. Urban Clim, 35, 2021. https://doi.org/10.1016/ j.uclim.2020.100750
  • G. Liu, B. Powell, and T. Friedrich, Climate downscaling for regional models with a neural network: A Hawaiian example. Prog Oceanogr, 215, 2023. https://doi.org/10.1016/ j.pocean.2023.103047
  • R. K. Srivastav, A. Schardong, and S. P. Simonovic, Equidistance quantile matching method for updating idfcurves under climate change. Water Resources Management, 28(9), 2539–2562, 2014. https://doi.org/10.1007/s11269-014-0626-y
  • Ordu’da sağanak sonrası taşkın (Flood after heavy rain in Ordu) https://www.hurriyet.com.tr/video/orduda-saganak-sonrasi-taskin-42295881, Accessed 14 July 2023
  • Ordu’da taşkın: Ev ve iş yerlerini su bastı ( Flood in Ordu: Houses and workplaces flooded )https://www.sozcu.com.tr/2022/gundem/orduda-dere-tasti-ev-ve-is-yerlerini-su-basti-7254892/ , Accessed 14 July 2023
  • H. Tayşi and M. Özger, Disaggregation of future GCMs to generate IDF curves for the assessment of urban floods. Journal of Water and Climate Change, 13(2), 2022. https://doi.org/ 10.2166/wcc.2021.241
  • H. Gürkan, H. Arabaci, M. Demircan, O. Eskioğlu, S. Şensoy, and B. Yazici, GFDL-ESM2M Modeli temelinde RCP4.5 ve RCP8.5 senaryolarına göre Türkiye için sıcaklık ve yağış projeksiyonları. Coğrafi Bilimler Dergisi, 14(2), 77–88, 2016. https://doi.org/10.1501/Cogbil_0000000174.
  • M. Vrac et al., Dynamical and statistical downscaling of the French Mediterranean climate: Uncertainty assessment. Natural Hazards and Earth System Science, 12(9), 2769–2784, 2012. https://doi.org/ 10.5194/nhess-12-2769-2012
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi