Kentsel atıksuda ve atıksu arıtma tesisinde bazı analjezik ve anti-enflamatuar farmasötiklerinin varlığı, giderimleri ve çevresel risk değerlendirilmesi

Farmasötiklerin sucul çevrelere ulaşmasındaki önemli kaynaklardan bir tanesi atıksu arıtma tesisi deşarjlarıdır. Bu çalışmada, Konya kenti kanalizasyon sisteminde bazı analjezik ve anti-enflamatuarların varlığı ve konsantrasyonu, Konya Atıksu Arıtma Tesisin (AAT)’de bu farmasötiklerin giderimi belirlenmiştir. AAT deşarjı ile alıcı ortama deşarj edilen farmasötiklerin oluşturduğu ekotoksikolojik risk balık, Daphnia magna ve alg için değerlendirilmiştir. Kanalizasyon sisteminin 22 farklı noktasından ve ATT giriş-çıkışından alınan örneklerin ekstraksiyonu katı faz ekstraksiyonu ile, farmasötiklerin kalitatif ve kantitatif analizleri ise sıvı kromatografisi kütle spektrometresi (LC-MS/MS) ile gerçekleştirilmiştir. Kanalizasyon sisteminde etodolac 3875 ng/L, diclofenac 119 ng/L, flurbiprofen 247912 ng/L, naproxen 1827 ng/L, paracetamol 7204 ng/L, propyphenazone 2.23 ng/L ortalama konsantrasyonlarında tespit edilmiştir. AAT giriş ve çıkışında ise sırasıyla etodolac 5080 ng/L ve 19688 ng/L, diclofenac 248 ng/L ve 962 ng/L, naproxen 1924 ng/L ve 97.7 ng/L, paracetamol 3286 ng/L ve 109 ng/L, propyphenazone 7.3 ng/L ve 20.9 ng/L ortalama konsantrasyonlarında tespit edilmiştir. AAT’de naproxen, paracetamol farmasötikleri için %90 üzerinde giderim gözlenmiş, diğer farmasötiklerin tesiste giderilemediği görülmüştür. Çıkış atıksuyunda tespit edilen konsantrasyonlar ile yapılan risk değerlendirmesinde risk oranı (RQ) değerleri 4.3x10-5-2.6x10-2 aralığında tespit edilmiştir ve alıcı ortam için önemsiz risk oluşturduğu belirlenmiştir. Buna rağmen, farmasötiklerin alıcı ortamlarda bulunan tek kirletici olmadığı, konvansiyonel ve diğer mikrokirleticilerle bir arada bulunduğu, hepsinin ayrı ayrı toksik etkileri birleştiğinde ciddi çevresel sorunlar oluşturabileceği unutulmamalıdır. Ayrıca, farmasötikler çevresel ortamlarda ve canlı dokularda birikebilir, besin zincirine taşınabilir.

Presence, removal and environmental risk assessment of some analgesic and anti-inflammatory pharmaceuticals in urban wastewater and wastewater treatment plant

One of the important sources for pharmaceuticals to reach aquatic environments is wastewater treatment plant discharges. In this study, the presence and concentration of some analgesic and anti-inflammatory in the sewage system and the removal of these pharmaceuticals in Konya Wastewater Treatment Plant (WWTP) were determined. Ecological risk posed by pharmaceuticals discharged to the receiving environment with WWTP discharge has been evaluated for fish, Daphnia magna and algae. Extraction of samples taken from 22 different points of the sewage system and WWTP influent and effluent was carried out with a solid phase extraction system. Qualitative and quantitative analyzes of pharmaceuticals were performed by liquid chromatography mass spectrometry (LC-MS/MS). Mean concentrations of etodolac 3875 ng/L, diclofenac 119 ng/L, flurbiprofen 247912 ng/L, naproxen 1827 ng/L, paracetamol 7204 ng/L, propyphenazone 2.23 ng/L were detected in the sewage system. Mean concentrations were detected for etodolac 5080 ng/L, 19688 ng/L, for diclofenac 248 ng/L, 962 ng/L, for naproxen 1924 ng/L, 97 ng/L, for paracetamol 3286 ng/L, 109 ng/L, for propyphenazone 7.30 ng/L, 20.9 ng/L at the influent and effluent of the WWTP, respectively. Over 90% removal was observed for naproxen and paracetamol in the WWTP, and it was observed that other pharmaceuticals could not be removed in the plant. In the risk assessment made with the concentrations detected in the effluent, the RQ values were determined in the range of 4.3x10-5-2.6x10-2 and it poses an insignificant risk for the receiving environment. However, it should be kept in mind that pharmaceuticals are not the only pollutants found in receiving environments, they coexist with conventional and other micropollutants, and when their toxic effects are combined, they can create serious environmental problems. In addition, pharmaceuticals can accumulate in environment and living tissues, enter the food chain.

___

  • K. Kodom, F. Attiogbe and F.A. Kuranchie, Assessment of removal efficiency of pharmaceutical products from wastewater in sewage treatment plants: A case of the sewerage systems Ghana limited, Accra. Heliyon, 7, 11, 08385, 2021. https://doi.org/10.1016/ j.heliyon.20 21.e08385.
  • D.J. Son, C.S. Kim, J.W. Park, J.H. Lee, S.H. Lee, S.K. Shin and D.H. Jeong, Fate evaluation of pharmaceuticals in solid and liquid phases at biological process of full-scale municipal wastewater treatment plants. Journal of Water Process Engineering, 46, 102538, 2022. https://doi.org/10.1016/j.jwpe.2021. 102538.
  • C.F. Couto, L.C. Lange and M.C.S. Amara, Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. Journal of Water Process Engineering, 32, 100927, 2019. https://doi.org/10 .1016/j.jwpe.2019.100927.
  • T. J. Scheytt, P. Mersmann and T. Heberer, Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83İ, 53 – 69, 2006. https://doi.org/10.1016/j.jconhyd.2005 .11.002.
  • M. Passananti, M. Lavorgna, M. R. Iesce, M. DellaGreca, M. Brigante, E. Criscuolo, F. Cermola and M. Isidori, Photochemical fate and eco-genotoxicity assessment of the drug etodolac. Science of The Total Environment, 518–519, 258-265, 2015. https://doi.org/10.1016/j.scitotenv.201 5.03.009.
  • L. Jiang, Y. Li, Y. Chen, B. Yao, X. Chen, Y. Yu, J. Yang and Y. Zhou, Pharmaceuticals and personal care products (PPCPs) in the aquatic environment: Biotoxicity, determination and electrochemical treatment. Journal of Cleaner Production, 388, 135923, 2023. https://doi.org/10.1016/j.jclepro.202 3.135923.
  • M. Papageorgiou, C. Kosma and D. Lambropoulou, Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569, 2016. https://doi .org/10.1016/j.scitoten v.2015.11.047.
  • R. Moreno-Gonzalez, S. Rodríguez-Mozaz, M. Gros, E. Perez-Canovas, D. Barcel ́o and V.M. Leon, Input of pharmaceuticals through coastal surface watercourses into a Mediterranean lagoon (Mar Menor, SE Spain): sources and seasonal variations. Science of The Total Environment, 490, 59–72, 2014. https://doi.org/10.101 6/j.scitotenv.2014.04 .097.
  • S. Aydin, M.E. Aydin and A. Ulvi, Monitoring the release of anti-inflammatory and analgesic pharmaceuticals in the receiving environment. Environmental Science and Pollution Research, 26(36):36887-36902, 2019. https://doi.org/10.1007/s 11 356-019-06821-4.
  • M. Xu, H., Huang, N. Li, F. Li, D. Wang and Q. Luo, Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicology and Environmental Safety, 175, 289–298, 2019. https://doi.org/10.1016/j.ecoenv. 2019.01.131.
  • Y.Y. Yang, W.R. Liu, Y.S. Liu, J.L. Zhao, Q.Q. Zhang, M. Zhang, J.N. Zhang, Y.X. Jiang, L.J. Zhang and G.G. Ying, Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China. Science of The Total Environment, 590–591, 611–619, 2017. https://doi.org/10.1016/j.scito tenv.20 17.03.001.
  • T.B. Veras, A. Luiz Ribeiro de Paiva, M.M.M.B. Duarte, D.C. Napoleão and J.J. da Silva Pereira Cabral, Analysis of the presence of anti-inflammatories drugs in surface water: A case study in Beberibe river - PE, Brazil. Chemosphere, 222, 961–969, 2019. https://doi.org/10.1016/j.chemosphere.201 9.01.167.
  • S. Daouk, N. Chèvre, N. Vernaz, C. Widmer, Y. Daali and S. Fleury-Souverain, Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems. Science of The Total Environment, 547, 244–253, 2016. https://doi.org/10.1016/j.s citotenv .2015.12.117.
  • M. Petrović, B. Škrbić, J. Živančev, L. Ferrando-Climent and D. Barcelo, Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Science of The Total Environment, 468–469, 415–428, 2014. https://doi .org/10.1016/j.scitotenv.2013.08.079.
  • P. Palma, S. Fialho, A. Lima, M.H. Novais, M.J. Costa, N. Montemurro, S. Pérez and M.L. de Alda, Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. Science of The Total Environment, 709, 2020. https://doi.org/10.1016/j.sci totenv.2019.136205.
  • M.J. Gallardo-Altamirano, P. Maza-Márquez, J.M. Peña-Herrera, B. Rodelas, F. Osorio and C. Pozo, Removal of anti-inflammatory/analgesic pharmaceuticals from urban wastewater in a pilot-scale A2O system: Linking performance and microbial population dynamics to operating variables. Science of The Total Environment, 643, 1481–1492, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.284.
  • M. Petrovic, M. Gros and D. Barcelo, Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Chromatography A, 1124, 68–81, 2006. https://doi.or g/10.1016/j.chroma.2006.05.024.
  • A. Jurado, E. Vazquez-Sune and E. Pujades, Urban groundwater contamination by nonsteroidal anti-inflammatory drugs. Water, 13, 720, 2021. https://doi .org/10.3390/w13050720.
  • B.M. Sharma, J. Bečanová, M. Scheringer, A. Sharma, G.K. Bharat, P.G. Whitehead, J. Klánová and L. Nizzetto, Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of The Total Environment, 646, 1459–1467, 2019. https://doi. org/10.1016/j.scitotenv .2018.07.235.
  • K. Hoshina, S. Horiyama, H. Matsunaga and J. Haginaka, Simultaneous determination of non-steroidal anti-inflammatory drugs in river water samples by liquid chromatography–tandem mass spectrometry using molecularly imprinted polymers as a pretreatment column. Journal of Pharmaceutical and Biomedical Analysis, 55, 5, 916-922, 2011. https://doi.org/10.1016/j.jpba.201 1.03.014.
  • A. Gogoi, P. Mazumder, V.K. Tyagi, G.G.T. Chaminda, A.K. An and M. Kumar, Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180, 2018. https://doi.org/10.1016/j.gsd.2017.12. 009.
  • O.F.S. Khasawneh and P. Palaniandy, Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532-556, 2021. https://doi.org/10.1016/j.psep.20 21.04.045.
  • A. Majumder, B. Gupta and A.K. Gupta, Pharmaceutically active compounds in aqueous environment: a status, toxicity and insights of remediation. Environmental Research, 176, 108542, 2019. http://dx.doi.org/10.1016/j.envres.2019.108542.
  • V. Calisto and V.I. Esteves, Psychiatric pharmaceuticals in the environment. Chemosphere, 77, 1257–1274, 2009. https://doi.org/10.1016/j.chemo sphere.2009.09.021.
  • C. R.D. Santos, G.S. Arcanjo, L.V. de S. Santos, K. Koch and M.C.S. Amaral, Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. Environmental Pollution, 290, 118049, 2021. https://doi.org/10.1016/j.envpol.2 021.1 18049.
  • R. Hernández-Tenorio, E. González-Juárez, J.L. Guzmán-Mar, L. Hinojosa-Reyes and A. Hernández-Ramírez, Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. Journal of Hazardous Materials Advances, 8, 100172, 2022. https://doi.org/10.1016/j.hazadv.2 022.100172.
  • J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr and R.D. Negele, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68, 2, 141-150, 2004. https://doi.org/10.1016/j.aquatox.2004.03.014.
  • J.-Q. Xiong, S.-J. Kim, M. B. Kurade, S. Govindwar, R.A.I. Abou-Shanab, J.-R. Kim, H.-S. Roh, M. A. Khan and B.-H. Jeon, Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Journal of Hazardous Materials, 370, 138-146, 2019. https://doi.org/10.1016/j.jhazmat.2 018.07. 049.
  • Drugbank, https://go.drugbank.com/, Accessed 13 March 2023.
  • National Library of Medicine, https://pubchem .ncbi.nlm.nih.gov/, Accessed 13 March 2023.
  • B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R. D. Tyagi and G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12, 2017. https://doi.org/10.10 16/j.biortech.2016.11.0 42.
  • H. Sanderson, D.J. Johnson, C.J. Wilson, R.A. Brain and K.R. Solomon, Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144, 383/395, 2003. https://doi.org/10.1016/S0 378-4274(03) 00257-1.
  • S. Zoritaa, L. Mårtensson and L. Mathiasson, Occurrence and removal of pharmaceuticals in a municipal, sewage treatment system in the south of Sweden. Science of The Total Envıronment 407, 2760-2770, 2009. https://doi.org/10.1016/j.scitotenv.2008. 12.030.
  • N. Migowska, M. Caban, P. Stepnowski and J. Kumirska, Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Science of The Total Environment, 441, 77-88, 2012. https://doi.org/10. 1016/j.scitotenv.2012.09.043.
  • J.M. Peralta-Hernandez and E. Brillas, A critical review over the removal of paracetamol (acetaminophen) from synthetic waters and real wastewaters by direct, hybrid catalytic, and sequential ozonation processes. Chemosphere, 313, 137411, 2023. https://doi.org/10.1016/j.chemosphere.2022.13 7411.
  • B. Maryam, V. Buscio, S. Ustun Odabasi and H. Buyukgungor, A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environmental Technology & Innovatio, 100641, 2020. https://doi.org/10.1016/j.eti.2020.10 0641.
  • A.E.B. Kermia, D. Fouial-Djebbar and M. Trari, Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. Comptes Rendus Chimie, 19, 963–970, 2016. https://doi.org/10.1016/j.crci.2016.05.005.
  • B. Blair, A. Nikolaus, C. Hedman, R. Klaper and T. Grundl, Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere, 134, 395-401, 2015. https://doi.org/10 .1016/j.chemosphere.2015.04.078.
  • K. Kołecka, M. Gajewska, P. Stepnowski and M. Caban, Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Science of The Total Environment, 647, 149-157, 2019. https://doi. org/10.1016/j.scitotenv.2018.07.439.
  • J.L. Santos, I. Aparicio, M. Callejón and E. Alonso, Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164, 1509–1516, 2009. https://doi.org/10.1016/j.jhazmat.2008.09.0 73.
  • C. Lacey, G. McMahon, J. Bones, L. Barron, A. Morrissey and J.M. Tobin, An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta, 75, 1089–1097, 2008. https://doi.org /10.1016/j.talanta.2008.01.011.
  • J.I. Nieto-Juárez, R.A. Torres-Palma, A.M. Botero-Coy and F. Hernández, Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674, 2021. https://doi.org/10.1016/j.envint. 2021.106674.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi