KAYISI ÇEKİRDEĞİ KABUKLARI İLE SULU ÇÖZELTİDEN METİLEN MAVİSİ ADSORPSİYONUNA PARTİKÜL BOYUTUNUN ETKİSİ

Partikül boyutu; sıcaklık, pH, temas süresi gibi adsorpsiyon sürecini etkileyebilen parametreler arasında önemli bir yere sahiptir. Bu çalışmada farklı partikül boyutlarına sahip kayısı çekirdeği kabukları kullanılarak sulu çözeltiden metilen mavisi adsorpsiyonunda partikül boyutunun etkisi araştırılmıştır. 1500 µm ortalama partikül boyutu için kesikli adsorpsiyon deneyinde elde edilen metilen mavisi giderim verimi ve adsorpsiyon kapasitesi sırasıyla %38.47 ve 7.69 mg/g olarak belirlenmiştir. Ortalama partikül boyutunun 106.5 µm değerine düşürülmesiyle giderim verimi ve adsorpsiyon kapasitesi sırasıyla % 92.64 ve 18.53 mg/g değerine yükselmiştir. Partikül boyutunun azalması metilen mavisi molekülleri ile adsorban madde arasındaki temas yüzeyinin önemli ölçüde artmasına neden olmuştur. Temas yüzeyinin artması dengeye ulaşmak için daha kısa bir zaman periyodu ile birlikte daha yüksek adsorpsiyon kapasitesi elde edilmesini sağlar. Sonuç olarak partikül boyutu ve temas yüzeyinin adsorpsiyon sürecinde oldukça önemli bir etkiye sahip olduğu sonucuna varılmıştır.

THE EFFECT OF MEAN PARTICLE SIZE ON THE METHYLENE BLUE ADSORPTION FROM AQUEOUS SOLUTIONS WITH APRICOT KERNEL SHELLS

Particle size has an important role among parameters that can be effect the adsorption process such as temperature, pH and contact time.  In this study, effect of the particle size on the adsorption of methylene blue from aqueous solution was investigated using apricot kernel shells with different particle sizes. In the batch adsorption experiments made by using materials with an average particle size of 1500 μm, For an average particle size of 1500 μm, obtained removal efficiency and adsorption capacity of methylene blue in the batch adsorption experiment were determined as 38.47% and 7.69 mg/g, respectively. By reducing the average particle size to 106.5 μm, removal efficiency and adsorption capacity increased to 92.64% and 18.53 mg/g, respectively. Reduction of the particle size causes a significant increase in the contact surface between the methylene blue molecules and the adsorbent material. The increase of the contact surface ensures that a higher adsorption capacity together with a shorter time period to reach equilibrium. As a result, it has been concluded that the particle size and contact surface have a considerable effect on the adsorption process.

___

  • [1] KARAÇETİN, G., SİVRİKAYA, S., İMAMOĞLU, M., “Adsorption of Methylene Blue from Aqueous Solutions by Activated Carbon Prepared from Hazelnut Husk Using Zinc Chloride”, Journal of Analytical and Applied Pyrolysis, 110, 270-276, 2014.
  • [2] YANG, L., SUN, Q., “The Adsorption of Basic Dyes from Aqueous Solution on Modified Peat-Resin Particle”, Water Research, 37, 1535-1544, 2003.
  • [3] ÖNAL, Y., “Kinetics of Adsorption of Dyes from Aqueous Solution Using Activated Carbon Prepared from Waste Apricot”, Journal of Hazardous Materials, 137, 1719-1728, 2006.
  • [4] FU, F., WANG, Q., “Removal of Heavy Metal Ions from Wastewaters: A Review”, Journal of Environmental Management, 92, 407-418, 2011.
  • [5] KURNIAWAN, T. A., CHAN, G. Y., LO, W. H., BABEL, S., “Physico–Chemical Treatment Techniques for Wastewater Laden with Heavy Metals”, Chemical Engineering Journal, 118, 83-98, 2006.
  • [6] RANGABHASHIYAM, S., ANU, N., SELVARAJU, N., “Sequestration of Dye from Textile Industry Wastewater Using Agricultural Waste Products as Adsorbents”, Journal of Environmental Chemical Engineering, 1, 629-641, 2013.
  • [7] AHMED, M.J., “Application of Agricultural Based Activated Carbons by Microwave and Conventional Activations for Basic Dye Adsorption: Review”, Journal of Environmental Chemical Engineering, 4, 89-99, 2016.
  • [8] CRITTENDEN, J.C., TRUSSELL, R.R., HAND, D.W., Water Treatment: Principles and Design, John Wiley & Sons, Hoboken, US, 2012.
  • [9] MARSH, H., REINOSO, F.R., Activated Carbon, Elseiver, London, UK, 2006.
  • [10] ZHOU, Y., ZHANG, L., CHENG, Z., “Removal of Organic Pollutants from Aqueous Solution Using Agricultural Wastes: A Review”, Journal of Molecular Liquids, 212, 739-762, 2015.
  • [11] AMUDA, O.S., GIWA, A.A., BELLO, I.A., “Removal of Heavy Metal from Industrial Wastewater Using Modified Activated Coconut Shell Carbon”, Biochemical Engineering Journal, 36, 174-181, 2007.
  • [12] MOHAN, D., SINGH, K., SINGH, V., “Trivalent Chromium Removal from Wastewater Using Low Cost Activated Carbon Derived from Agricultural Waste Material and Activated Carbon Fabric Cloth”, Journal of Hazardous Materials, 135, 280-295, 2006.
  • [13] WU, F.C., TSENG, R.L., “High Adsorption Capacity NaOH-Activated Carbon for Dye Removal from Aqueous Solution”, Journal of Hazardous Materials, 152, 1256-1267, 2008.
  • [14] CRINI, G., BADOT, P.M., “Application of Chitosan, A Natural Amino Polysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature”, Progress in Polymer Science, 33(4), 399-447, 2008.
  • [15] ALJEBOREE, A. M., ALSHIRIFI, A.N., ALKAIM, A.F., “Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon”, Arabian Journal of Chemistry, 10, 3381-3393, 2017.
  • [16] BHARGAVA, D.S., SHELDALKAR, S.B., “Effects of Adsorbent Dose and Size on Phosphate-Removal from Wastewaters”, Environmental Pollution, 76, 51-60 1992.
  • [17] WEBER, W. J. JR, Physicochemical Processes for Water Quality Control, John Wiley & Sons, Hoboken, US, 1972.
  • [18] SRIMURALI, M., PRAGATHI, A., KARTHIKEYAN, J., “A Study on Removal of Fluorides From Drinking Water by Adsorption onto Low-Cost Materials”, Environmental Pollution, 99, 285-289, 1998.
  • [19] GUIBAL, E, MILOT, C, TOBIN, J.M., “Metal-Anion Sorption by Chitosan Beads: Equilibrium and Kinetic Studies”, Industrial & Engineering Chemistry Research, 37, 1454–1463, 1998.
  • [20] AYGÜN, A., YENİSOY-KARAKAŞ, S., DUMAN, I., “Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties”, Microporous and Mesoporous Materials, 66, 189–195, 2003.
  • [21] DJILANI, J., ZAGHDOUDI, R., DJAZI, F., BOUCHEKIMA, B., LALLAM, A., MODARESSI, A., ROGALSKI, M., “Adsorption of Dyes on Activated Carbon Prepared from Apricot Stones and Commercial Activated Carbon”, Journal of the Taiwan Institute of Chemical Engineers, 53, 112-121, 2015.
  • [22] BAŞAR, C.A., “Applicability of the Various Adsorption Models of Three Dyes Adsorption onto Activated Carbon Prepared Waste Apricot”, Journal of Hazardous Materials, B135, 232–241, 2006.