Endüstriyel sünger ezme makinasının güç ünitesi tasarımı ve sonlu elemanlar metodu ile titreşim analizi

Tabiatta her cismin “Doğal Titreşim Frekansı” olarak adlandırılan sonsuz sayıda titreşim frekansı ve genliği vardır. Gelişen bilgisayar teknolojisi sayesinde, karmaşık yapıların doğal frekanslarının hesaplanması hızlı ve doğru bir şekilde gerçekleştirilmektedir. Bu çalışmada Endüstriyel sünger ezme makinasının doğal frekansları sonlu elemanlar yöntemleri ile analiz edilmiştir. Sonlu elemanlar yöntemi katı mekaniğinden akustik problemlere kadar birçok mühendislik problemini çözümünde kullanılan en yaygın sayısal yöntemlerden biridir. Tasarımı gerçekleştirilen Sünger ezme makinasının katı modelin, yaygın olarak kullanılan ANSYS Workbench 18.1 programı yardımıyla sonlu elemanlar yöntemi ile titreşim analizi gerçekleştirilmiştir. Analizlerde sistemi oluşturan bileşenler ayrı ayrı ve sitemin bir bütün olarak modellenerek analiz edilmiş ve elde edilen sonuçlar karşılaştırılmıştır. Sonlu elemanlar analizinde elde edilen doğal frekans değerleri tablo ve grafiklerle sunulmuştur.

Power unit design of industrial sponge crushing machine and vibration analysis by finite element method

Every object in nature has an infinite number of vibrational frequencies and amplitudes called "Natural Vibration Frequency". Thanks to the developing computer technology, the calculation of the natural frequencies of complex structures are carried out quickly and accurately. In this study, the natural frequencies of the industrial sponge crushing machine were analyzed by finite element methods. The finite element method is one of the most common numerical methods used in solving many engineering problems from solid mechanics to acoustic problems. Vibration analysis of the solid model of the designed sponge crushing machine was carried out using the finite element method with the help of the widely used ANSYS Workbench 18.1 program. In the analysis, the components that make up the system were modeled separately and the system as a whole and the results were compared. The natural frequency values obtained in the finite element analysis were presented in tables and graphics.

___

  • Eaves, D.R.T.L., Handbook of polymer foams. 2004.
  • Demirel, S. and B. Ergun Tuna, Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category. Polymer Testing, 76: p. 146-153, 2019.
  • Li, A., et al., Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/mg(OH 2/GF/HGB composites. Journal of Applied Polymer Science, 135(31): p. 46-51,2018.
  • Marsavina, L., et al., Failure of Polyurethane Foams under Different Loading Conditions. Key Engineering Materials 385-387: p. 205-208, 2008.
  • Samet Demirel , B.E.T., Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu Univ., Journal of Forestry Faculty 19(2): p. 225-234,2019
  • Gama, N.V., A. Ferreira, and A. Barros-Timmons, Polyurethane Foams: Past, Present, and Future. Materials (Basel), 11(10),2018.
  • H.Ulrich, Urethane Polymers. Kirk- Othmer Encyclopedia of Chemical Technology, New York.: J. Wiley,1983.
  • Quintero, M.W., et al., Flexible polyurethane foams as templates for cellular glass–ceramics. Journal of Materials Processing Technology, 209(12-13): p. 5313-5318, 2009.
  • Constantinescu, D.M. and D.A. Apostol, Performance and Efficiency of Polyurethane Foams under the Influence of Temperature and Strain Rate Variation. Journal of Materials Engineering and Performance, 29(5): p. 3016-3029, 2020.
  • Chen, Y., R. Das, and M. Battley, Finite element analysis of the compressive and shear responses of structural foams using computed tomography. Composite Structures, 159: p. 784-799, 2017.
  • Yang, C. and S. Kyriakides, Multiaxial crushing of open-cell foams. International Journal of Solids and Structures,.159: p. 239-256, 2019.
  • Esim, E. , Benzer, .E., Structural Analysis of Industrial Foam Crusher Machine By Using Finite Element Method. Avrupa Bilim ve Teknoloji Dergisi, 29: p. 343-350,2021.
  • Ewins, D.J., Modal Testing: Theory and Practice. Resarch Studies Press,2000.
  • Mustafa Tınkır and H.Ç. Sezgen, Linear static analysis of hydraulic cylinder via finite element method. Omer Halisdemir University Journal of Engineering Sciences, Volume 6, Number 1, (2017), 203-212, 6(1): p. 203-212, 2017.
  • Yıldırım , Ş., Esim E.,, Modal Analysis of Double Beam Overhead Type Crane Systems by Finite Element Method. Konya Journal of Engineering Sciences, 7: p. 975-988, 2019.
  • Yıldırım , Ş., Esim, E.,, Free vibration analysis of multi-carriages crane systems with finite element method, in 5th International Conference on Engineering and Natural Science. Prague. p. 22-30, 2019.
  • Aslan, T., Y. Üstün, and E. Esim, Stress distributions in internal resorption cavities restored with different materials at different root levels: A finite element analysis study. Australian Endodontic Journal, 45(1): p. 64-71, 2019.
  • Leblebicioğlu İ. , Esim E., Kılıç D. , Kılıç K., ‘All-On-Four ‘ , ‘All-On-Five’ Ve ‘All-On-Six’ konsepti kullanilarak üretilen protezlerin stres dağiliminin sonlu elemanlar analiz yöntemi ile incelenmesi. Selcuk Dental Journal., 8(3): p. 774-782, 2021.
  • Liu, W. Research on Technical Transformation and Innovative Design of Polyurethane Sponge Cutting Machine. IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), 2021.
  • Wu, Z., et al., Modal and Harmonic Reponse Analysis and Evaluation of Machine Tools. 2010: p. 929-933, 2010.
  • Rao, S.S., Mechanical Vibrations 2011, United State of America: Prentice Hall
  • De Silva, C.W., Vibration: Fundamentals and Practice Second Edition (2nd ed.), Boca Raton, FL., USA: Taylor and Francis, 2007.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi