Eklemeli imalat ile üretilmiş AlSi10Mg parçalara ardıl ısıl işlem süreleri ve üretim yönü parametrelerinin etkisinin incelenmesi

Bu çalışmada, Eklemeli İmalat ile üretilmiş parçaların inşa yönü ve farklı yaşlandırma sürelerinin parça üzerindeki etkileri incelenmiştir. Seçici Lazer Ergitme yöntemi (SLE) ile 0o – 45 – 90o inşa yönlerinde üretilmiş numunelere daha sonra çözeltiye alma ısıl işlemi uygulanmıştır. Takiben oda sıcaklığında su verme işlemine tabii tutulmuştur. Ardından da T4 ve T6 yaşlandırma işlemleri uygulanmıştır T6 yapay yaşlandırma işleminin avantajlarını görebilmek için numunelere farklı sürelerde ısıl işlem uygulanmıştır. Isıl işlemle yoğunluğun önemli ölçüde değişmediği görülmekle birlikte, özellikle T6 koşulları için ısıl işlem süresinin artmasıyla birlikte sertlik değerinin %35 civarında azaldığı belirtilmiştir. Uygulanan sıcaklığın, inşa yönünün ve ısıl işlem sürelerinin bir fonksiyonu olarak mikro yapıdaki düzensizlikler incelenmiş ve sertlik değerleriyle ilişkilendirilmiştir. İnşa yönü ve yoğunluk sonuçlarının sertlik üzerinde önemli bir etkisinin olmadığı görülmüştür.

Investigation on post heat treatment parameters of additively manufactured AlSi10Mg parts in terms of time and build direction

This study reports the combinatorial influence of build direction and different ageing times. The Additively Fabricated (AF) with selective laser melting (SLM) specimens built-in various build directions (0o – 45o - 90o). Accordingly, Solution Heat Treatment (SHT) was applied then quenched in water at room temperature afterward. Subsequently, T4 and T6 ageing procedures were executed. Besides achieving advantageous T6 artificial ageing (AA), specimens were exposed to different time combinations (0.5, 1, 2, 6, 10 h). Although it was observed that the density did not change significantly with heat treatment, it was indicated that the hardness value decreased around 35% with the decrease in time, especially for T6 conditions. The microstructure disparity as a function of the utilized temperature, build direction, and time of the specimens were correlated to hardness values. It was observed that build direction and relative density results have no significant effect on the hardness.

___

  • B. Saleh et al., 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges, Composite Part B Engineering, 201, 108-376, 2020. https://doi.org /10.1016/j.compositesb.2020.108376.
  • J. Y. Lee, J. An, and C. K. Chua, Fundamentals and applications of 3D printing for novel materials, Applied Materials Today, 7, 120–133, 2017. https://doi.org /10.1016/j.apmt.2017.02.004.
  • Wohlers T, Campbell RI., Wohlers report 2020: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Fort Collins, Colo: Wohlers Associates; 2020.
  • L. Yi, C. Gläßner, and J. C. Aurich, How to integrate additive manufacturing technologies into manufacturing systems successfully: A perspective from the commercial vehicle industry, Journal of Manufacturing Systems, 53, 195–211, 2019. https://doi.org/10.1016/j.jmsy.2019.09.007.
  • J. J. Lewandowski and M. Seifi, Metal additive manufacturing: A Review of mechanical properties, Annual Review of Material Research, 46, 151–186, 2016. https://doi.org/10.1146/annurev-matsci-070115-032024.
  • A. Majeed, Y. Zhang, J. Lv, T. Peng, Z. Atta, and A. Ahmed, Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM, Computational Industrial Engineering, 139, 106-194, 2020. https://doi.org/10.1016/j.cie.2019.106194.
  • L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, and Y. Sohn, Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment, Materials Characterization, 143, 5–17, 2018. https://doi.org/10.1016/j.matchar.2018. 04.022.
  • M. Moustafa, F. Samuel, H. Doty, Effect of solution heat treatment and additives on the microstructure of Al-Si (A413.1) automotive alloys, Journal of Material Science, 38, 4507-4522, 2003. https://doi.org /10.1023/A:1027333602276
  • I. Gutierrez-Urrutia, M. Munoz-Morris, D.G. Morris, Contribution of microstructural parameters to strengthening in an ultrafine-grained Al–7% Si alloy processed by severe deformation, Acta Materials, 55, 1319–1330, 2007. https://doi.org/10.1016/j.actamat.2006.09.037
  • B. Li, H. Wang, J. Jie, Z. Wei, Effects of yttrium and heat treatment on the micro- structure and tensile properties of Al–7.5 Si–0.5 Mg alloy, Materials Design, 32, 1617–1622, 2011. https://doi.org/10.1016/j.matdes.2010.08.040
  • M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing, 14, 39–48, 2017. https://doi.org/10.1016/j.addma.2016.12.001
  • NT. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Material Science and Engineering, 667, 139-146, 2016. https://doi.org/10.1016/j.msea.2016.04.092.
  • W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism, Material Science and Engineering, 663, 116-125, 2016. https://doi.org/10.1016/j.msea.2016. 03.088.
  • L. Girelli, M. Tocci, M. Gelfi, A. Pola, Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy, Material Science and Engineering, 739, 317-328, 2019. https://doi.org/10.1016/ j.msea.2018.10.026.
  • K. Zyguła, B. Nosek, H. Pasiowiec, N. Szysiak, Mechanical properties and microstructure of AlSi10Mg alloy obtained by casting and SLM technique, Results in Materials 104, 462-472, 2018.
  • X. Yu, L. Wang, T6 heat-treated AlSi10Mg alloys additive-manufactured by selective laser melting, Procedia Manufacturing, 15, 1701-1707, 2018. https://doi.org/ 10.1016/j.promfg.2018.07.265.
  • L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, Y. Sohn, Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment, Material Characterisation, 143, 5-17, 2018. https://doi.org/10.1016/j.matchar.2018. 04.022.
  • E. Padovano, C. Badini, A. Pantarelli, F. Gili, and F. D'Aiuto, A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion, Journal of Alloys Compound, 831, 154-822, 2020. doi: 10.1016/j.jallcom.2020.154822.
  • A. Bendijk, R. Delhez, L. Katgerman, T.H. De Keijser, E.J. Mittemeijer, N.M. Van Der Pers, Characterization of Al-Si-alloys rapidly quenched from the melt, Journal of Material Science, 15, 2803–2810, 1980. https://doi.org/10.1007/BF00550549.
  • H.J. Axon, W. Hume-Rothery, The Lattice spacings of solid solutions of different elements in aluminium, Proceedings of Royal Society London Series A Mathematical Physical and Engineering Science, 193 1–24, 1948. https://doi.org/10.1098/rspa.1948.0030.
  • K.G.G. Prashanth, S. Scudino, H.J.J. Klauss, K.B.B. Surreddi, L. Löber, Z. Wang, a. K.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al- 12Si produced by selective laser melting: Effect of heat treatment, Material Science and Engineering A, 590, 153–160, 2014. https://doi.org/10.1016/j.msea.2013.10.023.
  • L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öchsner, Direction and location dependency of selective laser melted AlSi10Mg specimens, Journal Materials Processing and Technology, 243, 48–61, 2017. https://doi.org/10.1016/j.jmatprotec.2016.11.029.
  • J. Fite, S. Eswarappa Prameela, J. A. Slotwinski, and T. P. Weihs, Evolution of the microstructure and mechanical properties of additively manufactured AlSi10Mg during room temperature holds and low temperature aging, Additive Manufacturing, 36, 101-429, 2020. https://doi.org/10.1016/j.addma. 2020.101429.
  • H. Ali, H. Ghadbeigi, K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V, Material Science and Engineering A, 712, 175–187, 2018. https://doi.org/ 10.1016/j.msea.2017.11.103
  • H. Asgari, C. Baxter, K. Hosseinkhani, M. Mohammadi, On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder, Material Science and Engineering A, 707, 148–158, 2017. https://doi.org/10.1016/j.msea.2017.09. 041.
  • DD. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Review, 57, 133–164, 2012. https://doi. org/10.1179/1743280411Y.0000000014
  • S. M. Yusuf, M. Hoegden, and N. Gao, Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion, International Journal of Advance Manufacturing Technology, 106, 4321–4337, 2020. https://doi. org/10.1007/s00170-019-04817-5.
  • Z. H. Li, Y. F. Nie, B. Liu, Z. Kuai, M Zhao, and F.Liu, Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting, Materials & Design, 192, 108-709, 2020.
  • A. Majeed, Y. Zhang, J. Lv, T. Peng, Z. Atta, and A Ahmed, Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM, Computers & Industrial Engineering, 139, 106-194, 2020. https://doi.org/10.1016/j.cie.2019.106194
  • N. O. Larrosa, W. Wang, N. Read, M. Loretto, H. Evans, C. Carr, J. and, P. J. Withers, Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy, Theoretical and Applied Fracture Mechanics, 98, 123-133, 2018. https://doi.org/10.1016/j.tafmec. 2018.09.011
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi