Elektrokoagülasyon yöntemi ile demir elektrotlar kullanılarak sulardan fosfat giderimi üzerine destek elektrolit türü ve konsantrasyonunun etkisi

Bu çalışmada elektrokoagülasyon prosesi kullanılarak atıksuyun iletkenliğini artırmak için suya verilen destek elektrolitin türü ve konsantrasyonunun sulardan fosfat giderimine etkisi araştırılmıştır. Ayrıca elektrolitsiz deneyler yapılmış ve sonuçlar karşılaştırılmıştır. Destek elektrolit tipi ve konsantrasyonunun fosfat giderme verimliliği, enerji tüketimi ve reaksiyon hızı üzerindeki etkisi analiz edilmiştir. Deneyler, elektrolit kullanımının fosfat giderme verimliliği üzerinde önemli bir etkisi olmadığını göstermiştir. Ancak elektrolit ilavesinin enerji tüketimini azalttığı ve uzaklaştırma oranını arttırdığı bulunmuştur. Elde edilen sonuçlardan en uygun elektrolit türü olarak NaCl ve optimum doz olarak 5 mM elektrolitin yeterli olduğu belirlenmiştir. Bu koşullar altında, 0.5 mA cm-2 akım yoğunluğunda 100 mg L^-1 PO_4-P için fosfat giderme verimi %96.98, enerji tüketimi 1.13 kWh m^-3 ve birinci dereceden reaksiyon hızı sabiti 0.0593 dk^-1 olarak elde edilmiştir.

The effect of supporting electrolyte type and concentration on the phosphate removal from water by electrocoagulation method using iron electrodes

In this study, the effect of the type and concentration of the supporting electrolyte given to the water to increase the conductivity in the electrocoagulation process on the phosphate removal from synthetically prepared waters was investigated. In addition, experiments were carried out without electrolyte and the results were compared. The effect of support electrolyte type and concentration on phosphate removal efficiency, energy consumption and reaction rate was analyzed. Experiments have shown that electrolyte use has no significant effect on phosphate removal efficiency. However, it has been found that the addition of electrolyte reduces energy consumption and increases the removal rate. From the results obtained, it was determined that NaCl as the most suitable electrolyte type and 5 mM electrolyte was sufficient as the optimum dose. Under these conditions, for 100 mg L^-1 PO_4-P at 0.5 mA cm^-2 current density, the phosphate removal efficiency was 96.98%, the energy consumption was 1.13 kWh m^-3 and the first order reaction rate constant was 0.0593 min^-1.

___

  • M. M. El-Sheekh, H. Y. El-Kassas, N. G.Shams El-Din, D. I. Eissa and B. A. El-Sherbiny, Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. International Journal of Phytoremediation, 1-15, (2021). https://doi.org/10.1080/15226514.2021.1915957.
  • M.R. Awual, Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. Journal of Cleaner Production, 228, 1311-1319, (2019). https://doi.org/10.1016/j.jclepro.2019.04.325.
  • M. Le Moal,, C. Gascuel-Odoux, A. Ménesguen, Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A. and Pinay, G. Eutrophication: A new wine in an old bottle? Science of The Total Environment, 651(1), 1-11, (2019). https://doi.org/10.1016/j.scitotenv.2018.09.139.
  • O. Axinte, I. S. Badescu, C. Stroe, V. Neacsu, L. Bulgariu, and D. Bulgariu, Evolution of trophic parameters from amara lake. Environ. Eng. Manag. J., 14, 559-565, (2015).
  • J.H. Andersen, L. Schlüter and G. Ertebjerg, Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. Journal of Plankton Research, 28(7), 621–628, (2006). https://doi.org/10.1093/plankt/fbl001.
  • W. Huang, S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph, and F. Haghseresht, Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158(1), 35-42, (2008). https://doi.org/10.1016/j.jhazmat.2008.01.061.
  • K.S. Hashim, H. M. Ewadh, A. A. Muhsin, S. L. Zubaidi, P. Kot, M. Muradov, M. Aljefery and R. Al-Khaddar, Phosphate removal from water using bottom ash: adsorption performance, coexisting anions and modelling studies. Water Sci. Technol., 83(1), 77–89, (2021). https://doi.org/10.2166/wst.2020.561.
  • H. Huang, J. Liu, P. Zhang, D. Zhang and F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 307, 696-706, (2017). https://doi.org/10.1016/j.cej.2016.08.134.
  • T. E. Bektaş, B. K. Uğurluoğlu and B. Tan, Phosphate removal by Ion exchange in batch mode. Water Practice and Technology, wpt2021072, (2021). https://doi.org/10.2166/wpt.2021.072.
  • Y. Zhang, E. Desmidt, A. Van Looveren, L. Pinoy, B. Meesschaert and B. Van der Bruggen, Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis”, Environmental Science and. Technology, 47(11):5888–5895, (2013). https://doi.org/10.1021/es4004476.
  • Y. Yang, J. Lohwacharin and S. Takizawa, Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Research, 65, 177-185, (2014). https://doi.org/10.1016/j.watres.2014.07.030.
  • Ş. Irdemez, N. Demircioğlu, Y. Ş. Yildiz and Z. Bingül, The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes. Separation and Purification Technology, 52(2), 218-223, (2006a). https://doi.org/10.1016/j.seppur.2006.04.008.
  • M. Muduli, V. Sonpal, K. Trivedi, S. Haldar, M.A. Kumar and S. Ray, 12 - Enhanced biological phosphate removal process for wastewater treatment: a sustainable approach. Wastewater Treatment Reactors, 273-287, (2021). https://doi.org/10.1016/B978-0-12-823991-9.00012-5.
  • F. J. Rubio-Rincón, C. M. Lopez-Vazquez, L. Welles, M. C. M. Van Loosdrecht and D. Brdjanovic, Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Research, 120, 156-164, (2017). https://doi.org/10.1016/j.watres.2017.05.001.
  • C. Barrera-Díaz, B. Bilyeu, G. Roa and L. Bernal-Martinez, Physicochemical Aspects of Electrocoagulation. Separation and Purification Reviews, 40(1), 1-24, (2011). DOI: 10.1080/15422119.2011.542737.
  • Z. Bingül, Ş. Irdemez, N. Demircioğlu, Effect of controlled and uncontrolled pH on tannery wastewater treatment by the electrocoagulation process. International Journal of Environmental Analytical Chemistry, (2021). DOI: 10.1080/03067319.2021.1925261.
  • I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı and O. Tünay, Electrocoagulation applications for industrial wastewaters: a critical review. Environmental Technology Reviews, 1(1), 2-45, (2012). DOI: 10.1080/21622515.2012.715390.
  • M. Kobya, M. Bayramoglu and M. Eyvaz, Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of Hazardous Materials, 148(1–2), 311-318, (2007). https://doi.org/10.1016/j.jhazmat.2007.02.036.
  • Ş. Irdemez, N. Demircioğlu and Y. Ş. Yildiz, The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes. Journal of Hazardous Materials, 137(2), 1231-1235, (2006b). https://doi.org/10.1016/j.jhazmat.2006.04.019.
  • Y. Ş. Yıldız, A. S. Koparal and B. Keskinler, Effect of initial pH and supporting electrolyte on the treatment of water containing high concentration of humic substances by electrocoagulation. Chemical Engineering Journal, 138(1–3), 63-72, (2008). https://doi.org/10.1016/j.cej.2007.05.029.
  • C. J. Izquierdo, P. Canizares, M. A. Rodrigo, J. P. Leclerc, G. Valentin and F. Lapicque, Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation. Desalination, 255(1–3), 15-20, (2010). https://doi.org/10.1016/j.desal.2010.01.022.
  • R. Keyikoglu, O. T. Can, A. Aygun and A. Tek, Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process. Colloid and Interface Science Communications, 33, 100210, (2019). https://doi.org/10.1016/j.colcom.2019.100210.
  • A. C. Ndjomgoue-Yossa, C. P. Nanseu-Njiki, I. M. Kengne and E. Ngameni, Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation. Int. J. Environ. Sci. Technol., 12, 2103–2110, (2015).
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi
Sayıdaki Diğer Makaleler

Klasik ve alttan alışlı dolusavak havalandırıcı performanslarının sayısal modelle incelenmesi

Mehmet Cihan AYDIN, Muhammed Reşid ÖZDEMİR

Afyonkarahisar bölgesi şartlarında bulut hareketlerinin gökyüzü sınıfları tabanlı tahmini

Ardan Hüseyin EŞLİK, Emre AKASLAN, Fatih Onur HOCAOĞLU

Farklı uydu sistemi kombinasyonlarının gerçek zamanlı hassas nokta konumlamaya etkisi

Cevat İNAL, Burhaneddin BİLGEN, Musa BAŞBÜK, Sercan BÜLBÜL

Sucul ortamdan amoksisilin gideriminde hibrit adsorpsiyon/oksidasyon performansının değerlendirilmesi

Dilşad OZTURK, Hamdi MIHÇIOKUR

Bursa'daki ulaştırma yatırımlarının kent-çevre-toplum ilişkileri açısından incelenmesi

Ahmet ÜNAL, Ahmet TORTUM

COVID-19 salgını dönemindeki kısıtlamaların sera gazı salınımına etkisi

Hülya AYKAÇ ÖZEN

Elektrokoagülasyon yöntemi ile demir elektrotlar kullanılarak sulardan fosfat giderimi üzerine destek elektrolit türü ve konsantrasyonunun etkisi

Sinan KUL, Züleyha BİNGÜL, Şahset İRDEMEZ, Fatma EKMEKYAPAR TORUN, Nuhi DEMİRCİOĞLU

Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli

Burhan BARAN

Abdominal bilgisayarlı tomografi görüntülerinde böbrek taşlarının sınırlarının ve sayılarının görüntü işleme yöntemleri kullanılarak tespiti.

Merve KARAMAN, SALİM ÇINAR

İplik işletmeleri iklimlendirme sektöründe kullanılan pleyt üzerindeki akışın sayısal olarak incelenmesi

Ahmet KAYA, Emrah GÖNEN