DARBELİ LAZER BİRİKTİRME (PLD) İLE Ti-6Al-4V ÜZERİNE HİDROKSİAPATİTİN (HAp) İNCE FİLMLERİNİN HAZIRLANMASI

Bu çalışmada; biyomedikal uygulamalarda implant malzemesi olarak kullanılan Ti-6Al-4V üzerine hidroksiapatit (HAp) ince filmlerinin büyütülmesi amaçlanmıştır. HAp ince filmlerin büyütülmesinde darbeli lazer biriktirme (PLD) tekniği kullanılmıştır. Alttaşın zımparalanması, kaplama sıcaklığı (500°C ve 650°C), kaplama gazı (argon, oksijen ve nitrojen), kaplama gazının nemlendirilmesi ve kaplama sonrası tavlama işlemlerinin HAp ince film üzerindeki etkileri araştırılarak optimize edilmesi amaçlanmış ve diğer değişkenler sabitlenmiştir. Elde edilen kaplamaların karakterizasyonu için Sıyırma Açısında X-Işını Kırınımı (GIXRD), Taramalı Elektron Mikroskobu (SEM) ve Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi kullanılmıştır. 650°C’de nemlendirilmiş Ar atmosferinde hazırlanan ince filmin HAp yoğunluğu ve yüzeyinin tutunmaya uygun olması nedeniyle biyomedikal uygulamalar için en başarılı sonucu verdiği sonucuna varılmıştır

THIN FILM DEPOSITION OF HYDROXYAPATITE (HAp) ON Ti–6Al–4V WITH PULSED LASER DEPOSITION (PLD)

This study aimed to grow hydroxyapatite thin film on Ti-6Al-4V, which is used in biomedical applications as implant material.HAp thin films deposited by pulsed laser deposition (PLD) technique. Sanding of the substrate, deposition temperature (500°C and 650°C), deposition gases (argon, oxygen and nitrogen), humectation of deposition gas and annealing after deposition were investigated to optimize thin films and the other variables were fixed. Grazing Incidence X-ray Diffraction (GIXRD), Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used for characterization of the obtained thin films. It is concluded that the thin film prepared at 650°C in humidified Ar atmosphere, has shown the best results to be used in biomedical applications because of its HAp concentration and suitable adsorption.

___

  • [1] M. Mucalo, Eds., Hydroxyapatite (HAp) for biomedical applications. Cambridge: Elsevier, 2015.
  • [2] O. Suzuki, "Octacalcium phosphate (OCP)-based bone substitute materials," Japanese Dental Science Review, vol. 49,no. 2, pp. 58-71, 2013.
  • [3] J. A. Jansen and B. Leon, Eds., Thin calcium phosphate coatings for medical implants. New York: Springer, 2009.
  • [4] N. J. Hallab, C. Vermes, C. Messina, K. A. Roebuck, T. T. Glant, and J. J. Jacobs, "Concentration‐and composition‐ dependent effects of metal ions on human MG‐63 osteoblasts," Journal of biomedical materials research, vol. 60, no. 3, pp. 420-433, 2002.
  • [5] C. M. Stanford, "Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation," International journal of molecular sciences, vol. 11, no. 1, pp. 354-369, 2010.
  • [6] K. De Groot, R. Geesink, C. Klein, and P. Serekian, "Plasma sprayed coatings of hydroxylapatite," Journal of biomedical materials research, vol. 21, no. 12, pp. 1375-1381, 1987.
  • [7] J. Wolke, K. Van Dijk, H. Schaeken, K. De Groot, and J. Jansen, "Study of the surface characteristics of magnetron‐ sputter calcium phosphate coatings," Journal of biomedical materials research, vol. 28, no. 12, pp. 1477-1484, 1994.
  • [8] P. Ducheyne, S. Radin, M. Heughebaert, and J. Heughebaert, "Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution," Biomaterials, vol. 11, no. 4, pp. 244-254, 1990.
  • [9] W. Lacefleld and L. Hench, "The bonding of Bioglass® to a cobalt-chromium surgical implant alloy," Biomaterials, vol. 7, no. 2, pp. 104-108, 1986.
  • [10] F. Cui, Z. Luo, and Q. Feng, "Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition," Journal of Materials Science: Materials in Medicine, vol. 8, no. 7, pp. 403-405, 1997.
  • [11] C. M. Cotell, "Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films," (in English), Applied surface science, vol. 69, no. 1, pp. 140-148, 1993.
  • [12] C. M. Cotell, D. B. Chrisey, K. S. Grabowski, J. A. Sprague, and C. R. Gossett, "Pulsed laser deposition of hydroxylapatite thin films on Ti‐6Al‐4V," Journal of Applied Biomaterials, vol. 3, no. 2, pp. 87-93, 1992.
  • [13] M. T. Yurtcan, O. Simsek, and M. Ertugrul, "Darbeli Lazer Yığma Sistemi ile YBCO İnce Filmlerin Büyütülmesi," Erzincan Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 2, pp. 157-167, 2011.
  • [14] D. B. Chrisey and G. K. Hubler, Eds., Pulsed Laser Deposition of Thin Films. New York: Wiley-Interscience, 1994.
  • [15] J. R. Lawrence, Eds., Advances in Laser Materials Processing: Technology, Research and Applications. Woodhead Publishing, 2017.
  • [16] L. Dobrzański, L. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, and M. Pancielejko, "Structure and mechanical properties of gradient PVD coatings," Journal of Materials Processing Technology, vol. 201, no. 1-3, pp. 310-314, 2008.
  • [17] M. Jelínek, V. Olsan, L. Jastrabik, V. Studnicka, V. Hnatowicz, J. Kvitek, V. Havránek, T. Dostálová, I. Zergioti and A. Petrakis, "Effect of processing parameters on the properties of hydroxylapatite films grown by pulsed laser deposition," Thin Solid Films, vol. 257, no. 1, pp. 125-129, 1995.
  • [18] O. Blind, L. H. Klein, B. Dailey, and L. Jordan, "Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates," Dental Materials, vol. 21, no. 11, pp. 1017-1024, 2005.
  • [19] Q. Bao, C. Chen, D. Wang, T. Lei, and J. Liu, "Pulsed laser deposition of hydroxyapatite thin films under Ar atmosphere," Materials Science and Engineering: A, vol. 429, no. 1-2, pp. 25-29, 2006.
  • [20] G. P. Dinda, J. Shin, and J. Mazumder, "Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: Effect of heat treatment on structure and properties," Acta Biomaterialia, vol. 5, no. 5, pp. 1821-1830, 2009.
  • [21] Y. Wang, J. Chen, K. Wei, S. Zhang, and X. Wang, "Surfactant-assisted synthesis of hydroxyapatite particles," Materials Letters, vol. 60, no. 27, pp. 3227-3231, 2006.
  • [22] O. Sagsoz, N. Polat Sagsoz, M. T. Yurtcan, and N. Ozcelik, "Hydroxyapatite coating effect on the bond strength between CAD/CAM materials and a resin cement," Odontology, vol. 107, no. 4, pp. 491-499, 2019.
  • [23] C. Kothapalli, M. Wei, A. Vasiliev, and M. T. Shaw, "Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite," Acta Materialia, vol. 52, no. 19, pp. 5655-5663, 2004.
  • [24] H. Eshtiagh-Hosseini, M. R. Houssaindokht, M. Chahkandhi, and A. Youssefi, "Preparation of anhydrous dicalcium phosphate, DCPA, through sol–gel process, identification and phase transformation evaluation," Journal of NonCrystalline Solids, vol. 354, no. 32, pp. 3854-3857, 2008.
  • [25] A. Rapacz-Kmita, C. Paluszkiewicz, A. Ślósarczyk, and Z. Paszkiewicz, "FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes," Journal of Molecular Structure, vol. 744-747, pp. 653-656, 2005.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi