Çimento kaplı geotekstil ile güçlendirilmiş kumlu zeminlerin yük deplasman davranışının incelenmesi

Bu çalışmada, çimento kaplı geotekstil ile güçlendirilmiş zeminlerin davranışını incelemek için tipik Kaliforniya Taşıma Oranı (CBR) deneyleri yapılmıştır. Bu amaçla kum zemin ve temel malzemesi için önce geotekstil daha sonra çimento kaplı geotekstil ile güçlendirilmiş deneyler yapılmıştır. Geotekstil ile güçlendirilmiş zeminler ile yapılan deneylerin sonuçları çimento kaplı geotekstil ile güçlendirilmiş zeminlerin deneylerinden elde edilen sonuçlarla karşılaştırılmıştır. Ayrıca güçlendirilmemiş durumdaki zeminin deney sonuçları güçlendirilmenin yapıldığı durumlar ile de kıyaslanmıştır. Deney sonuçları yük-deplasman davranışı ve CBR değerleri açısından değerlendirilmiştir. Bu sonuçlara göre, çimento kaplı geotekstil ile güçlendirilmiş temel malzemesi, güçlendirilmemiş duruma göre daha iyi performans göstermiştir; ancak geotekstil ile güçlendirilmiş temel malzemesi 6 mm yer değiştirmeye kadar güçlendirilmemiş durumdan daha kötü performans göstermiştir. Öte yandan hem geotekstil hem de çimento kaplı geotekstil ile güçlendirilmiş durumlar, kum zeminde donatısız duruma göre daha iyi performans göstermiştir. Ayrıca çimento kaplı geotekstil ile güçlendirilmiş durumlar hem kum zeminde hem de temel malzemesinde geotekstil ile güçlendirilmiş durumlara göre daha iyi performans göstermiştir. CBR değerleri açısından, geotekstil ve çimento kaplı geotekstil ile güçlendirilmiş kum zemin sırasıyla 1,68 ve 3,25 kat iyileşme göstermektedir. Çimento kaplı geotekstil ile güçlendirilmiş temel malzemesinin CBR değeri %59 artarken, geotekstil ile güçlendirilmiş durumda %4 azalmıştır.

Investigation of load-displacement behavior of cement-coated geotextile reinforced sandy soils

In this study, typical California Bearing Ratio (CBR) experiments were conducted to examine the behavior of cement-coated geotextile reinforced soils. For this purpose, firstly geotextile-reinforced then cement-coated geotextile-reinforced tests were carried out for sand soil and base material. The results of the experiments reinforced soils with geotextile were compared with the results obtained from the tests of reinforced soils with cement-coated geotextile. In addition, the test results of the unreinforced soil were compared with the reinforced conditions. The results of the experiments were evaluated in terms of load-displacement behavior and CBR values. In view of this results, base material reinforced with cement-coated geotextile outperformed compared to the unreinforced case; however, geotextile reinforced base material demonstrated worse than the unreinforced case, up to 6 mm displacement. On the other hand, both the geotextile reinforced, and cement-coated geotextile reinforced cases outperformed the unreinforced case on sand soil. In addition, cement-coated geotextile reinforced cases demonstrated better performance compared to the geotextile cases on both sand soil and base material. In terms of CBR values, geotextile and cement-coated geotextile reinforced sand soil indicated improvements of 1.68 and 3.25 times, respectively. While the CBR value of the cement-coated geotextile reinforced base material increased by 59%, it decreased by 4% in the geotextile reinforced case.

___

  • B. Bagriacik, Utilization of alkali-activated construction demolition waste for sandy soil improvement with large-scale laboratory experiments. Construction and Building Materials, 302 124173, 2021.https://doi.org/10.1016/J.CONBUILDMAT.2021.124173.
  • M. Sandiani and J. Tanzadeh, Laboratory assessing of the liquefaction potential and strength properties of Sand soil treated with mixture of nanoclay and glass fiber under dynamic and static loading. Journal of Materials Research and Technology, 9 12661–12684, 2020. https://doi.org/10.1016/J.JMRT.2020.08.059.
  • N. C. Consoli, M. A. Vendruscolo, and P. D. M. Prietto, Behavior of plate load tests on soil layers improved with cement and fiber. Journal of Geotechnical and Geoenvironmental Engineering, 129 96–101, 2003. https://doi.org/10.1061/(ASCE)10900241(2003)129:1(96).
  • T. Yetimoglu, M. Inanir, and O. E. Inanir, A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23 174–183, 2005. https://doi.org/10.1016/J.GEOTEXMEM.2004.09.004
  • P. M. Chaple and A. I. Dhatrak, Performance of coir fiber reinforced clayey soil. The International Journal Of Engineering And Science (IJES), 2–4, 2013.
  • G. M. Latha and A. Somwanshi, Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27 281–294, 2009. https://doi.org/10.1016/J.GEOTEXMEM.2009.02.001
  • S. Saha Roy and K. Deb, Bearing capacity of rectangular footings on multilayer geosynthetic-reinforced granular fill over soft soil. International Journal of Geomechanics, 17 04017069, 2017. https://doi.org/10.1061/(ASCE)GM.19435622.0000959.
  • N. Ceylan Bora, C. Kayadelen, G. Altay, Y. Önal, M. Öztürk, P. Cafer Kayadelen, and M. Yakup Önal, Comparative effectiveness research of palm tree pruning waste and geotextiles on subgrade stabilization. Građevinar, 74 829–839, 2022. https://doi.org/10.14256/JCE.3401.2021.
  • Y. Önal, M. Çalışıcı, C. Kayadelen, and G. Altay, A comparative experimental study of geocell and geogrid-reinforced highway base layers under repeated loads. Road Materials and Pavement Design, 1–16, 2023.https://doi.org/10.1080/14680629.2023.2182126.
  • G. Altay, C. Kayadelen, T. Taşkıran, and Y. Z. Kaya, A laboratory study on pull-out resistance of geogrid in clay soil. Measurement: Journal of the International Measurement Confederation, 139 301–307, 2019. https://doi.org/10.1016/j.measurement.2019.02.065.
  • C. Kayadelen, T. Ö. Önal, and G. Altay, Experimental study on pull-out response of geogrid embedded in sand. Measurement: Journal of the International Measurement Confederation, 117 390–396, 2018. https://doi.org/10.1016/j.measurement.2017.12.024.
  • Y. Önal, M. Öztürk, G. Altay, and C. Kayadelen, Comparison of the effect of geotextile and palm tree pruning waste on cbr value of sand soil. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 5 570–579, 2022. https://doi.org/10.47495/OKUFBED.998633.
  • E. Kaplan, C. Kayadelen, M. Öztürk, Y. Önal, and G. Altay, Experimental evaluation of the usability of palm tree pruning waste (PTPW) as an alternative to geotextile. Revista de la Construccion, 21 69–82, 2022. https://doi.org/10.7764/RDLC.21.1.69.
  • D. K. Talukdar, A Study of correlation between california bearing ratio (cbr) value with other properties of soil. International Journal of Emerging Technology and Advanced Engineering, 4 562, 2014.
  • L. S. Ho and V. Q. Tran, Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste. Journal of Cleaner Production, 370 133587, 2022. https://doi.org/10.1016/j.jclepro.2022.133587.
  • T. Taskiran, Prediction of California bearing ratio (CBR) of fine grained soils by AI methods. Advances in Engineering Software, 41 886–892, 2010. https://doi.org/10.1016/j.advengsoft.2010.01.003.
  • B. Yildirim and O. Gunaydin, Estimation of California bearing ratio by using soft computing systems. Expert Systems with Applications, 38 6381–6391, 2011. https://doi.org/10.1016/J.ESWA.2010.12.054.
  • A. Bardhan, C. Gokceoglu, A. Burman, P. Samui, and P. G. Asteris, Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Engineering Geology, 291 106239, 2021. https://doi.org/10.1016/j.enggeo.2021.106239.
  • I. González Farias, W. Araujo, and G. Ruiz, Prediction of California Bearing Ratio from index properties of soils using parametric and non-parametric models. Geotechnical and Geological Engineering, 36 3485–3498, 2018. https://doi.org/10.1007/S10706-018-0548-1/FIGURES/10.
  • M. Alawi, M. Rajab, M. H. Alawi, and M. I. Rajab, Prediction of California bearing ratio of subbase layer using multiple linear regression models. Road Materials and Pavement Design, 14 211–219, 2013. https://doi.org/10.1080/14680629.2012.757557.
  • T. V. Nagaraju, C. D. Prasad, and M. J. Raju, Prediction of California Bearing Ratio using particle swarm optimization. Advances in Intelligent Systems and Computing, 1048 795–803, 2020. https://doi.org/10.1007/978-981-15-0035 0_65/COVER.
  • K. Ontürk, S. Firat, I. Vural, J. M. Khatib, S. Üniversitesi, G. Meslek, Y. Mimari, R. Bölümü, G. Üniversitesi, T. Fakültesi, and İ. M. Bölümü, Uçucu kül ve mermer tozu kullanarak yol altyapısının iyileştirilmesi. Journal of Polytechnic, 17 35–42, 2014. https://doi.org/10.2339/2014.17.
  • B. Kalantari, B. B. K. Huat, and A. Prasad, Effect of polypropylene fibers on the California Bearing Ratio of air cured stabilized tropical peat soil. American J. of Engineering and Applied Sciences, 3 1–6, 2010.
  • A. P. Balkıs and S. Macid, Effect of cement amount on cbr values of different soil. European Journal of Science and Technology, 809–815, 2019. https://doi.org/10.31590/ejosat.588990.
  • B. Bağriaçik, Ulaşım yapıları temel/alt temel zeminlerinin kireçle stabilizasyonu soil stabilization with lime at transportation structure ’s base/subbase abstract. Çukurova University Journal of the Faculty of Engineering and Architecture, 32 39–48, 2017.
  • E. Merve, O. Kahraman, E. A. Batuhan, Y. Türedi, and M. Örnek, Lastik atık katkılı zeminlerde cbr değerinin araştırılması. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 2 41–44, 2019.
  • M. S. Negi and S. K. Singh, Experimental and numerical studies on geotextile reinforced subgrade soil. International Journal of Geotechnical Engineering, 00 1–12, 2019. https://doi.org/10.1080/ 19386362.2019.1684654.
  • M. Öztürk, Y. Önal, B. Ok, G. Altay, A. Beycioğlu, and A. Keskin, Load-displacement behavior of serpentine and olivine obtained as waste from the mines. International Conference on Engineering, Natural and Applied Science 2021 (ICENAS’21) (2021), pp. 166–1732021.
  • G. Altay, Geocell kullanılarak oluşturulan dayanma duvarlarının deneysel ve nümerik olarak incelenmesi, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Osmaniye2019.
  • ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA,2006.
  • ASTM D6913, Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA,2006.
  • TS EN 196-1, Çimento deney metotları - Bölüm 1: Dayanım tayini. Türk Standartları Enstitüsü,2016.
  • ASTM D4429, Standard test method for CBR (California Bearing Ratio) of soils in place (withdrawn 2018). ASTM International, West Conshohocken, PA,2009.
  • ASTM D1883, Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils. ASTM International, West Conshohocken, PA,2016.
  • S. K. Dash, N. R. Krishnaswamy, and K. Rajagopal, Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19 235–256, 2001.https://doi.org/10.1016/S0266-1144(01)00006-1.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi