ATIKTAN ENERJİ: MİKRO-TÜRBİNLERDE DEPONİ GAZLARININ KULLANIMI

   Sosyal ve ekonomik kalkınma, nüfus ve yaşam standartlarındaki artışın sonucu olarak enerji tüketimi tüm dünyada sürekli artmakta ve bu etkilerin sonucu olarak ortaya çıkan katı atıklarda çevre üzerinde önemli etkilere sebep olmaktadır. Katı atıklar tüketici temelli ekonomik yaşam tarzının önemli ve zararlı bir sonucudur. Sürdürülebilir enerji için kentsel katı atık depolama sahalarında oluşan deponi gazları yüksek metan içeriği nedeniyle enerji üretim sistemlerinde yakıt olarak kullanılabilmektedirler. Bu çalışmada, küçük ölçekli bir katı atık depolama sahasında 30 kW gücünde mikro-türbin kullanarak elektrik enerjisi üretimi teknik ve ekonomik olarak incelenmiştir. Mikro-türbinin yıllık elektrik enerjisi, üretimi kapasite faktörü 0,8 olduğunda, 210.240 kWh olarak hesaplanmıştır. Türbin özgül maliyetine göre hesaplanan elektrik enerjisinin bir değere getirilmiş maliyeti % 8 indirim oranı için 0.079 $ olarak belirlenmiştir. Çalışmadan elde edilen sonuçlar, küçük ölçekli katı atık depolama sahasında 30 kW gücünde mikro-türbin kullanılarak elektrik enerjisi üretiminin teknik ve ekonomik olarak uygun olduğunu göstermiştir.

WASTE TO ENERGY: EXPLOITATION OF LANDFILL GAS IN MICRO-TURBINES

   The energy consumption has been increasing due to social and economic development, risen up of people’s living standard and also population growth in the world. In addition, solid wastes occurring as result of these driven causes have emerging as a significant pressure on environment. Solid waste is the most visible and pernicious by-product of consumer-based economic lifestyle. The Municipal Solid Waste (MSW) is the principal volume of residues produced worldwide. Landfill gas which is generated by means of MSW due to considerable methane content can be used as fuel in the energy generation machines for sustainable energy production. In this study, a technical and economic study using micro-turbine of the 30 kW power for utilization in small size landfill areas is presented. Annual electricity generation of micro-turbine considered is 210,240 kWh when capacity factor is 0.80. Economical evaluation for micro-turbine was made using the Levelized Cost of Electricity method. The electricity cost is predicted to be US$0.079 for 8% discount rate and the considered turbine-specific cost. The results show that electricity production based on biogas with micro-turbine of 30 kW power is realistic in terms of techno-economic for the small size landfill area.

___

  • [1] LU, H., LIN, B., CAMPBELL, D.E., SAGISAKA, M., REN, H., “Interactions among Energy Consumption, Economic Development and Greenhouse Gas Emissions in Japan after World War II”, Renewable and Sustainable Energy Reviews, 54, 1060–1072, 2016.
  • [2] FAN, Y., YU, Z., FANG, S., LIN, Y., LIN, Y., LIAO, Y., MA, X., “Investigation on the Co-Combustion of Oil Shale and Municipal Solid Waste by Using Thermogravimetric Analysis”, Energy Conversion and Management, 117, 367–374, 2016.
  • [3] AYDI, A., ABICHOU, T., ZAIRI, M., SDIRI, A., “Assessment of Electrical Generation Potential and Viability of Gas Collection from Fugitive Emissions in A Tunisian Landfill”, Energy Strategy Reviews, 8, 8-14, 2015.
  • [4] HOORNWEG, D., BHADA-TATA, P., What a Waste: A Global Review of Solid Waste Management, Urban Development Series Knowledge Papers, World Bank, Washington, DC, 2012.
  • [5] MUSTAFA, S.S., MUSTAFA, S.S., MUTLAG, A.H., “Kirkuk Municipal Waste to Electrical Energy”, Electrical Power and Energy Systems, 44, 506–513, 2013.
  • [6] LEME, M.M.V., ROCHA, M.H., LORA, E.E.S., VENTURINI, O.J., LOPES, B.M., FERREIRA, C.H., “Techno-Economic Analysis and Environmental Impact Assessment of Energy Recovery from Municipal Solid Waste (MSW) in Brazil”, Resources, Conservation and Recycling, 87, 8–20, 2014.
  • [7] AHMED, S.I., JOHARI, A., HASHIM, H., LIM, J.S., JUSOH, M., MAT, R., ALKALI, H., “Economic and Environmental Evaluation of Landfill Gas Utilisation: A Multi-Period Optimisation Approach for Low Carbon Regions”, International Biodeterioration & Biodegradation, vol.102, pp.191-201, 2015.
  • [8] USEPA, 2014. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2012, Washington, DC.
  • [9] BROUN, R., SATTLER, M., “A Comparison of Greenhouse Gas Emissions and Potential Electricity Recovery from Conventional and Bioreactor Landfills”, Journal of Cleaner Production, 112, 2664-2673, 2016.
  • [10] BAJIĆ, B.Ž., DODIĆ, S.N., VUČUROVIĆ, D.G., DODIĆ, J.M., GRAHOVAC, J.A., “Waste-to-Energy Status in Serbia”, Renewable and Sustainable Energy Reviews, 50, 1437–1444, 2015.
  • [11] PAPURELLO, D., LANZINI, A., TOGNANAC, L., SILVESTRI, S., SANTARELLI M., “Waste to Energy: Exploitation of Biogas from Organic Waste in A 500Wel Solid Oxide Fuel Cell (SOFC) Stack”, Energy, 85, 145-158, 2015.
  • [12] LI, S., YOO, H.K., SHIH, J.S., PALMER, K., MACAULEY, M., “Assessing The Role of Renewable Energy Policies in Landfill Gas Energy Projects”, Resources for the Future, http://www.rff.org/ (accession date: 12.02.2017)
  • [13] KUMAR, A., SHARMA, M.P., “Estimation of GHG Emission and Energy Recovery Potential from MSW Landfill Sites”, Sustainable Energy Technologies and Assessments, 5, 50–61, 2014.
  • [14] AGUILAR-VIRGEN, Q., TABOADA-GONZALEZ, P., OJEDA-BENÍTEZ, S., “Analysis of the Feasibility of the Recovery of Landfill Gas: A Case Study of Mexico”, Journal of Cleaner Production, 79, 53-60, 2014.
  • [15] ZUBERI, M.J.S., ALI, S.F., “Greenhouse Effect Reduction by Recovering Energy from Waste Landfills in Pakistan”, Renewable Sustainable Energy Rev, 44, 117–131, 2015.
  • [16] BIDART, C., FRÖHLING, M., SCHULTMANN, F., “Municipal Solid Waste and Production of Substitute Natural Gas and Electricity as Energy Alternatives”, Applied Thermal Engineering, 51, 1107-1115, 2013.
  • [17] USEPA, Turning a Liability into an Asset: A Landfill Gas-to-Energy Project Development Handbook, Landfill Methane Outreach Program U.S. Environmental Protection Agency, EPA 430-B-96-0004, Washington DC: US Environmental Protection Agency, 1996.
  • [18] https://www.capstoneturbine.com/products/c30 (accession date: 12.02.2017)
  • [19] IRENA, Renewable Energy Technologies: Cost Analysis Series. Biomass for Power Generation, Volume 1: Power Sector, Issue 5/5, 2012.
  • [20] EPA. LFG Energy Project Development Handbook, 2015.
  • [21] ALLAN, G., GILMARTIN, M., MCGREGOR, P., SWALESB, K., “Levelised Costs of Wave and Tidal Energy in The UK: Cost Competitiveness and the Importance of “Banded” Renewables Obligation Certificates”, Energy Policy, 39, 23-39, 2011.
  • [22] LARSSON, S., FANTAZZINI, D., DAVIDSSON, S., KULLANDER, S., HÖÖK, M., “Reviewing Electricity Production Cost Assessments”, Renewable and Sustainable Energy Reviews, 30, 170–183, 2014.