Crack identification for transient heat operator by using domain decomposition method

Crack identification for transient heat operator by using domain decomposition method

This work deals with cracks identification from over-determined boundary data. The consideration physical phenomena corresponds to the transient heat equation. we give a theoretical result of identifiability for the inverse problem under consideration. Then, we consider a recovering process based on coupling domain decomposition method and minimizing an energy-type error functional. The efficiency of the proposed approach is illustrated by several numerical results.

___

  • G. Alessandrini and A. Diaz Valenzuela. Unique determination of multiple cracks by two measurements. SIAM J. Control Optim., 34(3): 913–921, 1994.
  • S. Andrieux and T. N. Baranger. Energy methods for Cauchy problems of evolutions equations. In Journal of Physics: Conference Series, volume 135, page 012007. IOP Publishing, 2008.
  • S. Andrieux, T. N. Baranger, and A. Ben Abda. Solving Cauchy problems by minimizing an energy-like functional. Inverse problems, 22(1):115–133, 2006.
  • S. Andrieux and A. Ben Abda. Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse problems, 12(5):553–563, 1996.
  • S. Andrieux, A. Ben Abda, and T. N. Baranger. Data completion via an energy error functional. Comptes Rendus M´ecanique, 33(2):171–177, 2005.
  • M. Azaiıez, F. Ben Belgacem, and H. El Fekih. On Cauchy’s problem: II. Completion, regularization and approximation. Inverse problems, 22(4): 1307–1336, 2006.
  • L. Baratchart, J. Leblond, F. Mandrea, and E. B. Saff. How can the meromorphic approximation help to solve some 2D inverse problems for the laplacian. Inverse Problems, 15(3): 79–90, 1999.
  • J. V. Beck, B. Blackwell, and Charles R. St. Clair Jr. Inverse heat conduction: Ill-posed problems. James Beck, 1985.
  • A. Ben Abda and H. D. Bui. Planar crack identification for the transient heat equation. Inv. Ill-Posed Problems, 11(11): 27–31, 2003.
  • F. Ben Belgacem. Why is the Cauchy problem severely ill-posed? Inverse Problems, 23(2): 823, 2007.
  • F. Ben Belgacem and H. El Fekih. On Cauchy’s problem: I. A variational Steklov-Poincar´e theory. Inverse Problems, 21(6):1915–1936, 2005.
  • M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings of the IEEE, 1988.
  • A. Björck. Numerical Methods for Least Squares Problems. SIAM Journal on Mathematical Analysis, 1996.
  • M. Brühl, M. Hanke, and M. Pidcock. Crack detection using electrostatic measurements. ESAIM: M2AN, 35(3): 595–605, 2001.
  • K. Bryan and M. Vogelius. A uniqueness result concerning the identification of a collection of cracks from nitely many elastostatic boundary measurements. SIAM J. Math. Anal., 23(4): 950–958, 1992.
  • A. Friedman and M. Vogelius. Determining cracks by boundary measurements. Indiana Univ. Math., 38:527–556, 1989.
  • P. Grisvard. Singularities in boundary value problems, volume 22. Springer, 1992.
  • J. Hadamard and Philip M. Morse. Lectures on Cauchy’s problem in linear partial differential equations. Physics Today, 6: 18, 1953.
  • D. N. Hao and D Lesnic. The Cauchy problem for Laplaces equation via the conjugate gradient method. IMA Journal of Applied Mathematics, 65(2): 199–217, 2000.
  • F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka. Freefem++. Numerical Mathematics and Scientific Computation. Laboratoire J. L. Lions, Universit´e Pierre et Marie Curie, 3, 2007.
  • V. Isakov. Inverse Problems for Partial Differential Equations. Springer Science, 1998.
  • S. Kowalevski. Zur theorie der partiellen difierentialgleichungen. J. Reine Angew. Math., 80:1–32, 1875.
  • V. A. Kozlov, V. G. Maz’ya, and A. V. Fomin. An iterative method for solving the Cauchy problem for elliptic equations. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 31(1): 64–74, 1991.
  • P. Le Tallec, Y. H. De Roeck, and M. Vidrascu. Domain decomposition methods for large linearly elliptic three-dimensional problems. Journal of Computational and Applied Mathematics, 34(1): 93–117, 1991.
  • K. Miller. Least squares methods for ill-posed problems with a prescribed bound. SIAM Journal on Mathematical Analysis, 1(1):52–74, 1970.
  • M. Moussaoui and B. K. Sadallah. R´egularite des coefficients de propagation de singularit´es pour l´equation de la chaleur dans un ouvert plan polygonal. CR Acad. Sci. Paris Ser. I Math, 293(5):297–300, 1981.
  • A. Quarteroni and A. Valli. Domain decomposition methods for partial differential equations. Oxford University Press, 1999.
  • T. Wei, Y. C. Hon, and L. Ling. Method of fundamental solutions with regularization techniques for cauchy problems of elliptic operators. Engineering Analysis with Boundary Elements, 31(4): 373–385, April 2007.