Polietilen ve Kereste Tozlarının Ko-pirolizi: Piroliz Ürün Değeri Üzerinde Polietilenin Etkisi
Bu çalışmanın amacı biyokütlenin kopiroliz sırasında plastikler üzerindeki etkisini araştırmaktır. Kereste tozlarının (SP), polietilenin (PE) ve bunların karışımlarının pirolizi, 550 °C ve 600 °C değişen sıcaklıklarda yarı-kesikli bir reaktörde gerçekleştirildi. Bu çalışma, endüstriyel kullanım için alternatif bir sıvı yakıt üretmek amacıyla, biyolojik kütle ile plastik atıkların kopiroliz işlemini geliştirilmesi için bir ön çalışmadır. Bileşenlerin kopirolizi sırasında bir plastik ile bir biyokütle arasında meydana gelen etkileşimleri vurgulamak için, plastikler ve biyokütle ile deneyler gerçekleştirildi. Her bir bileşenin ana parçalanma olayı, bileşenlerin beraber olduğunda, yalnız olmalarına göre daha yüksek sıcaklıklarda gerçekleştiği görüldü ve bunun nedeninin iki bileşen kopiroliz sırasında birbirlerini dengelediği düşünüldü. Bu etkileşimlerin plastiklere ve biyokütleye bağlı olduğu çıkarımı yapıldı. Ayrıca, biyokütle ve plastik atıkların karışımı kullanılarak laboratuvar ölçekli bir reaktörde piroliz deneyleri yapıldı. Bazı önemli işletme parametrelerinin sürecin sonucu üzerindeki etkisi de analiz edildi. Bu nedenle, bu kopiroliz işleminin, bir endüstriyel reaktör tasarlanırken ısı kayıplarına dikkat edilmesi koşuluyla ekonomik açıdan uygulanabilir olduğu görüldü. Elde edilen SP ve PE'nin pirolizi için maksimum sıvı ürün verimi sırasıyla % 35,17 ve % 61,00 iken, SP ve PE ortak pirolizi için maksimum sıvı ürün verimi 1:1 karışım oranında ve 550 °C'de % 46,05 sonucuna ulaşıldı.
Co-pyrolysis of Polyethylene and Sawmills Powder: Influence of Polyethylene on Pyrolysis Product Value
The aim of this study was to investigate the effect on plastics during co-pyrolysis with biomass. Pyrolysis of sawmills powders (SP), polyethylene (PE) and their mixtures was carried out in a semi-batch reactor with varying temperatures at 550 °C and 600 °C. This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes with biomass with the aim to produce an alternative liquid fuel for industrial use. Experiments were carried out with plastics and biomass to highlight the interactions occurring between a plastic and a biomass during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastics and the biomass. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of plastic wastes and biomass. The influence of some key operating parameters on the outcome of the process was analysed. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. The maximum liquid product yields for the pyrolysis of SP and PE obtained were 35,17% and 61,00%, respectively, whereas the maximum liquid product yield for SP/PE co- pyrolysis was 46,05% at 550 °C with 1:1 blend ratio.
___
- Orhan Y., Hrenovic J., Büyükgüngör H., “Biodegradation of Plastic Compost Bags Under Controlled Soil Conditions”, Acta Chimica Slovenica, 51, 579-588, 2003.
- Khan, M.S., Kaneesamkandi Z., Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia. Int., J. Innovation Applied Study, 4 (1), 101–113, 2013.
- Siddiqui, M.N., Redhwi, H.H., Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process Technology, 90, 545-552, 2009.
- Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Nizami, A.S., Catalytic pyrolysis of plastic waste: A review, Process. Saf. Environ. Prot. 102, 822-838, 2016a.
- Achilias D.S., Roupakias C., Megalokonomos P., Lappas A.A., Antonakou Ε.V., Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), Journal of Hazardous Materials, Volume 149, Issue 3, Pages 536–542 Edited By E. Gidarakos and N.P. Nikolaidis, 2007.
- Lopez, A., Marco, I.D., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Aranzabal, A., Catalytic pyrolysis of plastic wastes with two different types of catalytic: ZSM-5 zeolite and Red Mud. Applied Catal. B: Environment, 104, 211–219c, 2011a.
- Lopez, A., De Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chem. Eng. J., 173, 62-71, 2011.
- Lopez, A., Marco, I.D., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Catalytic stepwise pyrolysis of packaging plastic waste, J. Anal. Applied Pyrolysis, 96, 54–62, 2012.
- Chen, D., Yin, L., Wang, H., He, P., Pyrolysis technologies for municipal solid waste: a review. Waste Management, 34, 2466-2486, 2014.
- Buah W.K., Cunliffe A.M., Williams P.T., Characterization of Products from the Pyrolysis of Municipal Solid Waste, Process Safety and Environmental Protection, Volume 85, Issue 5, 450–457, 2007.
- Velghe, I., et al., Study of pyrolysis of municipal solid waste for the production of valuable products, Journal of Analytical and Applied Pyrolysis, 92 (2) 366-375, 2011.
- Zeaiter, J., A process study on the pyrolysis of waste polyethylene, Fuel, 133, 276-282, 2014.
- Syamsiro, M., Shuo Cheng, Wu Hu, Harwin Saptoadi, Nosal Nugroho Pratama, Wega Trisunaryanti, Kunio Yoshikawa, Liquid and Gaseous Fuels from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts, Waste Technology, Vol. 2(2), 44-51, 2014.
- Lee, K.H., Shin, D.H., Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction. Waste Management, 27, 168–176, 2007.
- Siddiqui, M.N., Redhwi, H.H., Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process Technology, 90, 545–552, 2009.
- Miskolczi, N., Angyal, A., Bartha, L., Valkai, I., Fuel by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process Technology, 90, 1032–1040, 2009.
- Lee, K.H., Effects of the types of zeolite on catalytic upgrading of pyrolysis wax oil., J. Anal. Applied Pyrolysis, 94, 209–214, 2012.
- Panda A.K., Singh R.K., Mishra D.K., Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustainable Energy Rev, 14: 233–48, 2010.
- Hugo T.J., Pyrolysis of Sugarcane. Department of Process Engineering University of Stellenbosch, 2010.
- Montoya J.I., Valdés C., Chejne F., Gómez C.A., Blanco A., Marrugo G., et al., Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: an experimental study, J Anal Applied Pyrolsis, 112: 379–87, 2015.
- Abnisa F., Wan Daud W.M.A., Ramalingam S., Azemi MNBM, Sahu J.N., Co- pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel, 108: 311–318, 2013.
- Brebu M., Ucar S., Vasile C., Yanik J., Co-pyrolysis of pine cone with synthetic polymers., Fuel
- Cornelissen T., Yperman J., Reggers G., Schreurs S., Carleer R., Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value.
- Anuar Sharuddin S.D., Abnisa F, Wan Daud W.M.A., Aroua M.K., A review on pyrolysis of plastic wastes. Energy Convers Management, 115:308–26, 2016.