İndirgenmiş Grafen Oksit Katkılı UHMWPE Kompozitin Kuru ve Sulu Ortamlarda Aşınma Davranışlarının Karşılaştırılması

Bu çalışmada, katkısız ultra yüksek moleküler ağırlıklı polietilen (UHMWPE) ile ağırlıkça % 0,5 indirgenmiş grafen oksit (CRGO) katkılı kompozitin (CRGO/UHMWPE) kuru ve saf su ortamlarında aşınma davranışları incelenmiştir. Morfolojik incelemeler CRGO dolgusunun polimer matriksde homojen dağıldığını ve matriks dolgu etkileşiminin sağlandığını göstermiştir. Kompozit örneğinin sürtünme katsayısı ve aşınma hızı hem kuru hem de saf su ortamlarında CRGO ilavesi ile azalmıştır. Kuru aşınma ortamında kompozit örneğinde plastik deformasyon ve yorulma aşınması baskınken, saf su ortamında adhezif aşınma izleri görülmüştür.

A Comparative Investigation of The Wear Behavior of Reduced Graphene Oxide Filled UHMWPE Composite Under Dry and Water Environments

Ultra-high molecular weight polyethylene (UHMWPE) is the most relevant materials for hip and knee replacements due to its bio-compatibility and excellent properties. In this study, graphene with its low density and lubricating properties was used as filler and was incorporated into UHMWPE matrix to strengthen the performance of composite. Wear behaviors of pure UHMWPE and composite (CRGO/UHMWPE) filled with 0,5 wt.% reduced graphene oxide (CRGO) under dry and distilled water environments were studied. UHMWPE and CRGO were mixed with the liquid phase ultrasonic dispersion and composite sample were produced by hot press molding. FTIR analysis results showed that there was interaction between the filler and polymer matrix, XRD analysis confirmed the modification of crystalline structure of UHMWPE and SEM-EDS elemental mapping results of composite indicated that oxygen was uniformly distributed in the polymer matrix. The coefficient of friction and wear rate of composite sample decreased under both dry and distilled water conditions by the addition of CRGO filler. Because lubrication capability of both graphene and distilled water had a significantly effect on friction and wear behavior of composite sample.  Plastic deformation and fatigue wear were dominant for the composite sample under dry sliding but adhesive wear tracs were observed under distilled water conditions.

___

  • Referans1 Sánchez-Sánchez, X., Elias-Zuñiga, A., Hernández-Avila, M., “Processing of Ultra-High Molecular Weight Polyethylene/Graphite Composites by Ultrasonic Injection Moulding: Taguchi Optimization”, Ultrasonics – Sonochemistry, 44, 350–358, 2018.
  • Referans2 Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q., “Tribological Behavior of UHMWPE Reinforced With Graphene Oxide Nanosheets”, Tribology Letters, 46, 1, 55–63, 2012.
  • Referans3 Salari, M., Taromsari, S. M., Bagheri, R., Faghihi Sani, M. A., “Improved Wear, Mechanical, and Biological Behavior of UHMWPE-HAp-Zirconia Hybrid Nanocomposites With a Prospective Application in Total Hip Joint Replacement”, Journal of Materials Science, 5, 54, 4259–4276, 2009.
  • Referans4 Pang, W., Ni, Z., Chen, G., Huang, G., Huang, H., Zhao, Y., “Mechanical and Thermal Properties of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Nanocomposites”, RSC Advances, 5, 77, 63063-63072, 2015.
  • Referans5 Mindivan, F., Goktas, M., Green Synthesis of Reduced Graphene Oxide (RGNO) / Polyvinylchloride (PVC) Composites and Their Structural Characterization, Materials Research Proceedings, 8, 143-151, 2018.
  • Referans6 Mohammed, A. S., Ali, A., Nesar, M., “Evaluation of Tribological Properties of Organoclay Reinforced UHMWPE Nanocomposites”, Journal of Tribology, 139, 1-6, 2017.
  • Referans7 Ahmad, M., Uzir Wahit, M., Rafiq Abdul Kadir, M., Zaman Mohd Dahlan, K.., “Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite”, The Scientific World Journal, 2012, 1-13, 2012.
  • Referans8 Bahrami, H., Ramazani S. A., A., Kheradmand, A., Shafiee, M., Baniasadi, H., “Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler–Natta Polymerization”, Advances in Polymer Technology, 0, 1-7, 2015.
  • Referans9 Peng Chang, B., Akil, H. Md., Nasir, R. Bt., Khan, A., “Optimization on Wear Performance of UHMWPE Composites Using Response Surface Methodology”, Tribology International, 88, 252–262, 2015.
  • Referans10 Lusitâneo Pier Macuvele, D., Collaa, G., Cescaa, K., Ribeiroa, L.F.B., Costad, C.E., Nonesa, J., Breitenbachd, E.R., Portoa, L.M., Soaresa, C., Antônio Fioric, M., Gracher Riellaa, H., “UHMWPE/HA Biocomposite Compatibilized by Organophilic Montmorillonite: An evaluation of The Mechanical-Tribological Properties and Its Hemocompatibility and Performance in Simulated Blood Fluid”, Materials Science & Engineering C, 100, 411–423, 2019.
  • Referans11 Meng, L., Li, W., Ma, R., Huang, M., Wang, J., Luo, Y., Wang, J., Xia, K., “Long UHMWPE Fibers Reinforced Rigid Polyurethane Composites: An Investigation in Mechanical Properties”, European Polymer Journal, 105, 55–60, 2018.
  • Referans12 Pang, W., Ni, Z., Wu, J., Zhao, Y., “Investigation of Tribological Properties of Graphene Oxide Reinforced Ultrahigh Molecular Weight Polyethylene Under Artificial Seawater Lubricating Condition”, Applied Surface Science, 434, 273–282, 2018.
  • Referans13 Golchin, A., Wikner, A., Emami, N., “An Investigation into Tribological Behaviour of Multi-Walled Carbon Nanotube/Graphene Oxide Reinforced UHMWPE in Water Lubricated Contacts”, Tribology International, 95, 156–161, 2016.
  • Referans14 Chang, T., Yuan, C., Guo, Z., “Tribological Behavior of Aged UHMWPE Under Water-Lubricated Condition”, Tribology International, 1-24, 2018.
  • Referans15 Guezmil, M., Bensalah, W., Mezlini, S., “Effect of Bio-Lubrication on The Tribological Behavior of UHMWPE Against M30NW Stainless Steel”, Tribology International, 94, 550–559, 2016.
Nevşehir Bilim ve Teknoloji Dergisi-Cover
  • ISSN: 2148-466X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Nevşehir Hacı Bektaş Veli Üniversitesi