Inverse Gas Chromatographic Determination of the Surface Properties of ZSM-5 Zeolite

Zeolites are microporous members of the smectite group and are widely used in industrial applications. The surface, morphological mineralogical and physico-chemical properties of zeolites are studied by different instrumental analysis techniques. The surface functional groups were determined by Fourier transform infrared (FTIR) spectra. The morphology and surface functional groups of the materials have been analyzed with the aid of scanning electron microscopy (SEM) images and X-ray diffraction (XRD). The pore properties including the Brunauer-Emmett-Teller (BET) surface area, pore volume, pore size distribution and average pore diameter of the zeolite was determined by physical adsorption of N2 at -196 ○C. Inverse gas chromatography (IGC) was applied to characterize the surface of zeolite.

ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi

Zeolitler, simektit grubunun mikro gözenekli üyeleridir ve endüstriyel uygulamalarda geniş kullanım alanı bulurlar. Zeolitlerin yüzey, morfolojik, mineralojik ve fizikokimyasal özellikleri farklı aletli analiz teknikleri ile incelenmiştir. Yüzey fonksiyonel grupları Fourier dönüşümlü kızılötesi (FTIR) spektrumları ile belirlenmiştir. Malzemelerin morfolojisi ve yüzey fonksiyonel grupları taramalı elektron mikroskobu (SEM) görüntüleri ve X ışını kırınım desenleri yardımıyla analiz edilmiştir. Zeolitin, Brunauer-Emmett-Teller (BET) yüzey alanı, gözenek hacmi, gözenek büyüklüğü dağılımı ve ortalama gözenek çapı da dâhil gözenek özellikleri, -196 ○C de N2 atmosferinde fiziksel adsorpsiyon ile belirlenmiştir. Zeolit yüzeyini karakterize etmek için ters gaz kromatografisi (TGK) uygulanmıştır. ZSM-5 zeoliti, Yüzey özellikleri, Morfolojik özellikler, Fizikokimyasal özellikler

___

  • [1] Xu, H.Y.;Wu, L.C.; Shi, T.N.; Liu,W.C.; Qi, S.Y. “Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash” Science China Technological Sciences, 57, 1127–1134, 2014.
  • [2] Flanigen E.M., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. J.C., Elsevier Science B.V., Amsterdam. 2001, p 11-37.
  • [3] Kunkeler P.J., Downing R.S., van Bekkum, H., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 987.
  • [4] Maesen T., Marcus, B., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 1.
  • [5] Russel J.D., Fraser, A.R., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, (Wilson, M.J. editor). Chapman & Hall, New York, 1994, p 11-67.
  • [6] Fripiat,J.J., Advanced Technique for Clay Mineral Analysis, Elsevier, New York, 1982.
  • [7] Gates W.P., Komadel P., Madejova J., Bujdak J., Stucki J.W., Kirkpatrick R.J., “Electronic Properties of Reduced-charge Montmorillonites” Applied Clay Science, 16, 257–271, 2000.
  • [8] Brunauer S., Emmett P.H., Teller E., “Adsorption of Gases in Multimolecular Layers” Journal of American Chemical Society, 60, 309–319, 1938.
  • [9] Song K., Sandi G., “Characterization of Montmorillonite Surfaces after Organosilane Modification” Clays Clay Miner., 49, 119–125, 2001.
  • [10] Valverde J. L., Canizares P., Sunkou M. R., Moliuna C. B., “Enhanced Thermal stability of A1-pillared Smectites Modified with Ce and La” Clays Clay Miner., 48, 424–432, 2000.
  • [11] Cordeiro N., Gouveia C., John M.J., “Investigation of Surface Properties of Physico-Chemically Modified Natural Fibres Using Inverse Gas Chromatography” Industrial Crops and Products, 33, 108-115, 2011.
  • [12] Vaculícová L., Plevová E., “Identification of clay minerals and micas in sedimentary rocks” Acta Geodynamica et Geomaterialia, 2, 167–175, 2005.
  • [13] Farmer V.C., Russell J.D., “Effects of particle size and structure on the vibrational frequencies of layer silicates” Spectrochimica Acta 22, 389-98, 1966.
  • [14] Ali M.A., Brisdon B., Thomas W.J., “Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios” Applied Catalyst A, 252, 149-162, 2003.
  • [15] Leinonen H., Lehto J., “Purification of metal finishing waste waters with zeolites and activated carbons” Waste Management and Research, 19, 45-57, 2001.
  • [16] Shirazi L., Jamshidi E., Ghasemi M.R., “The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size” Crystal Research and Technology, 43(12), 1300–1306, 2008.
  • [17] Yang G.H., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y., “Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis” Journal of American Chemical Society, 132, 8129–8136, 2010.
  • [18] Bao J., Yang G.H., Okada C., Yoneyama Y., Tsubaki N., “H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas” Applied Catalyst A, 394, 195–200, 2011.
  • [19] Abdelrahman E.A., “Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media” Journal of Molecular Liquid, 253, 72–82, 2018.
  • [20] Liu M., Li J., Jia W., Qin M., Wang Y., Tong K., Chen H., “Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide” RSC Advances, 5, 9237–9240, 2015.
  • [21] Ho R., Heng J.Y.Y., “A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids” KONA Powder Part Journal, 30, 164–180, 2013.