H + + H2 (v=0, j=0-3)  H2 + +H (v=0-2, j=0) Reaksiyonunun Kuasiklasik Yörünge Metodu İle İncelenmesi

Bu çalışmada H3+ potansiyel enerji yüzeyi üzerinde H++H2H2++H reaksiyonu kuasiklasik yörünge metodu kullanılarak reaksiyondinamikleri ve kinetikleri incelendi. Bu anlamda toplam açısal momentum kuantum sayısının sıfır ve sıfırdan büyük bazı değerleriiçin reaksiyon ihtimaliyetleri ve reaksiyon tesir kesitleri çarpışma enerjisinin fonksiyonu olarak hız sabitleri ise sıcaklığa bağlıolarak hesaplandı. Sonuçlar, giriş kanalındaki iki atomlu H2 molekülünün v=0, j=0 başlangıç kuantum durumundan, ürün molekülünv' = 0 titreşim kuantum durumuna reaksiyon ihtimaliyeti b=0 için bir eşik davranışı sergilemediğini göstermektedir. Bununla birlikteürün molekülün titreşim kuantum sayısı arttıkça reaksiyon ihtimaliyetlerinin bir eşik davranışı gösterdiği ve eşik enerjisi ürünmolekülün titreşim kuantum sayısının artması ile büyük enerji değerlerine doğru kaymakta olduğu görülmektedir. Buna göreH++H2H2++H reaksiyonunun termonötral bir reaksiyon olduğu söylenebilir. Hız sabitleri için 200-1000 0K sıcaklık aralığında birArhenus davranışı sergilememektedir. Bu çalışmada rapor edilen klasik sonuçlar ile kuantum mekaniksel sonuçların birbirleriyleuyum içerisinde olduğu görülmüştür.

The Investigation of H + + H2 (v=0, j=0-3)  H2 + +H (v=0-2, j=0) Reaction with Quasiclassical Trajectory Method

In this study, the reaction dynamics and kinetics have investigated the H+ +H  H + +H reaction on the potential energy surface of H + using the quasi-classical trajectory methods. The reaction probabilities, reaction cross section as a function of collision energy and rate constants depending on temperature have been calculated for total angular momenta J from 0 to 3. The results shown that there isn‟t a threshold behaviour the reaction probability from v=0, j=0 initial quantum state of H molecule‟s in the reactant channel to v' = 0 vibrational quantum states of the H+ molecule in the product channel for b=0. However, as the vibrational quantum number of product molecule increases, the reaction probabilities exhibit a threshold behaviour and product molecule‟s energy shifts toward larger values of energy. Accordingly, the H+ +H  H + +H reaction is a reaction thermo-neutral. The rate constants shown that there isn‟t an Arrhenius type behaviour in range temperature from 200 K to 1000 K. In this study, the results reported that classical and quantum mechanical results were found to be in harmony with each other.

___

  • Bougleux E., Galli D., Lithium hydride in the early Universe and in protogalactic clouds, Monthly Notices of the Royal Astronomical Society, 288, 638, 1997.
  • Galli D., Palla F., The chemistry of the early Universe, Astronomy and Astrophysics, 335, 403, 19 Lepp S., Stancil P. C., Dalgarno A., Atomic and molecular processes in the early Universe, Journal of Physics B-Atomic Molecular and Optical Physics, 35, R57, 2002.
  • Bovino S., Wernli M., Gianturco F. A., Fast LiH Destructıon In Reaction With H: Quantum Calculatıons And Astrophysıcal Consequences, Astrophysical Journal, 699, 383, 2009.
  • Gomez-Carrasco S., Gonzalez-Sanchez L., Aguado A., Sanz-Sanz C., Zanchet A., Roncero O., Dynamically biased statistical model for the ortho/para conversion in the H-2 + H-3(+) -> +H3(+) + H-2 reaction, Journal of Chemical Physics, 137, 094303, 2012.
  • Ichihara A., Iwamoto O., Janev R. K., Cross sections for the reaction H++H-2 (v=0-14) -> H+H2(+) at low collision energies, Journal of Physics B-Atomic Molecular and Optical Physics, 33, 4747, 2000.
  • Carmona-Novillo E., Gonzalez-Lezana T., Roncero O., Honvault P., Launay J. M., Bulut N., Aoiz F. J., Banares L., Trottier A., Wrede E., On the dynamics of the H(+)+D(2)(v=0, j=0) -> HD + D(+) reaction: A comparison between theory and experiment, Journal of Chemical Physics, 128, 014304, 2008.
  • Chajia M., Levine R. D., Reactive and nonreactive charge transfer by the FMS method: low energy H++D-2, and H+H-2(+) collisions, Physical Chemistry Chemical Physics, 1, 1205, 1999. Gonzalez-Lezana T., Roncero O., Honvault P., Launay J. M., Bulut N., Aoiz F. J., Banares L., A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H++H-2 -> H-2+H+ exchange reaction, Journal of Chemical Physics, 125, 094314, 2006. Hayes M. Y., Skodje R. T., Dynamics of the Rydberg electron in H-*+D-2 -> D-*+HD reactive collisions, Journal of Chemical Physics, 126, 104306, 2007. Wrede E., Schnieder L., Seekamp-Schnieder K., Niederjohann B., Welge K. H., Reactive scattering of Rydberg atoms: H*+D-2 -> HD+D*, Physical Chemistry Chemical Physics, 7, 1577, 2005. Karplus M., Porter R. N., Sharma R. D., Exchange Reactions with Activation Energy. I. Simple Barrier Potential for (H, H2), Journal of Chemical Physics, 43, 3259, 1965.
  • Aoiz F. J., Banares L., Herrero V. J., Recent results from quasiclassical trajectory computations of elementary chemical reactions, Journal of the Chemical Society-Faraday Transactions, 94, 2483, 1998.
  • Aoiz F. J., Banares L., Herrero V. J., Dynamics of insertion reactions of H-2 molecules with excited atoms, Journal of Physical Chemistry A, 110, 12546, 2006.
  • Banares L., Aoiz F. J., Honvault P., Launay J. M., Dynamics of the S(D-1)+H-2 insertion reaction: A combined quantum mechanical and quasiclassical trajectory study, Journal of Physical Chemistry A, 108, 1616, 2004.
  • Brass O., Schlier C., How A Collision Complex Forgets Its Origin - H-3(+), Journal of the Chemical Society-Faraday Transactions, 89, 1533, 1993.
  • Gerlich D., Nowotny U., Schlier C., Teloy E., Complex-Formation In Proton-D2 Collisions, Chemical Physics, 47, 245, 1980.
  • Ichihara A., Shirai T., Yokoyama K., A study on ion-molecule reactions in the H-3(+) system with the trajectory-surface-hopping model, Journal of Chemical Physics, 105, 1857, 1996.
  • Krenos J. R., Preston R. K., Wolfgang R., Tully J. C., Molecular-Beam And Trajectory Studıes Of Reactions Of H+ With H2, Journal of Chemical Physics, 60, 1634, 1974.
  • Schlier C., Vix U., Lıfetımes Of Triatomıc Collision Complexes, Chemical Physics, 95, 401, 19 Schlier C. G., Vix U., Complex-Formation In Proton-Hydrogen Collisions .2. Isotope Effects, Chemical Physics, 113, 211, 1987.
  • Takayanagi T., Kurosaki Y., Ichihara A., Three-dimensional quantum reactive scattering calculations for the nonadiabatic (D+H-2)(+) reaction system, Journal of Chemical Physics, 112, 2615, 2000.
  • Tully J. C., Preston R. K., Trajectory Surface Hopping Approach To Nonadiabatic Molecular Collisions - Reaction Of H+ With D2, Journal of Chemical Physics, 55, 562, 1971.
  • Ushakov V. G., Nobusada K., Osherov V. I., Electronically nonadiabatic transitions in a collinear H-2+H+ system: Quantum mechanical understanding and comparison with a trajectory surface hopping method, Physical Chemistry Chemical Physics, 3, 63, 2001.
  • Kamisaka H., Bian W., Nobusada K., Nakamura H., Accurate quantum dynamics of electronically nonadiabatic chemical reactions in the DH2+ system, Journal of Chemical Physics, 116, 654, 2002.
  • Holliday M. G., Muckerma J., Friedman L., Isotopic Studies Of Proton-Hydrogen Molecule Reaction, Journal of Chemical Physics, 54, 1058, 1971. Bulut N., Castillo J. F., Aoiz F. J., Banares L., Real wave packet and quasiclassical trajectory studies of the H++LiHreaction, Physical Chemistry Chemical Physics, 10, 821, 2008. Muz İ., "H + +H 2 Etkileşmesinde Kuasiklasik Yörünge Metodu Kullanılarak Reaksiyon Tesir Kesitleri ve Reaksiyon Hız Sabitlerinin Hesaplanması", Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, s. 72, Elazığ, 2009. Bolton K., Hase W. L., Peslherbe G. H., "Direct Dynamics Simulations of Reactive Systems In Modern Methods for Multidimensional Dynamics Computations in Chemistry", Thompson D. L., Ed. World Scientific, Singapore, s. 143-189, 1998.
  • Levine R. D., "Molecular Reaction Dynamics", Cambridge University, s. 2005.