Emaye Kaplama Endüstrisi Atıksularının Klasik Ve Modifiye Fenton Prosesleri İle Arıtımı

Emaye kaplama endüstrisi atıksuları yağ-gres, renk, kimyasal oksijen ihtiyacı (KOİ), siyanür ve krom, nikel, çinko, kadmiyum, demir vb. ağır metal içeriği yüksek atıksulardır. Bu çalışma kapsamında, emaye kaplama endüstrisi atıksularının klasik ve mofidiye Fenton prosesleri ile arıtımı incelenmiştir. Her iki metodun da verimini izlemek için hedef parametre olarak kimyasal oksijen ihtiyacı (KOİ) seçilmiştir. Çalışmada, atıksuyun başlangıç pH’ı, katalist demir (Fe2+ veya Fe0) konsantrasyonu ve hidrojen peroksit (H2O2) konsantrasyonlarının optimizasyonu gerçekleştirilmiştir. Ayrıca optimum şartlarda kinetik çalışma da gerçekleştirilmiştir. Optimum deneysel şartlar, klasik Fenton prosesi için pH = 3, [Fe2+] = 150 mg/L ve [H2O2] = 250 mg/L ve modifiye Fenton prosesi için pH = 3, [Fe0] = 200 mg/L ve [H2O2] = 200 mg/L olarak belirlenmiştir. Optimum şartlarda, klasik Fenton prosesi ile KOİ gideriminin ilk 5 dakikada reaksiyon bileşenlerinin ortamdaki yeterli varlığından dolayı çok hızlı gerçekleştiği ve sonrasında giderim hızının azaldığı gözlemlenmiştir. Modifiye Fenton prosesinde ise KOİ giderimi, metalik demir tozunun öncelikle çözünmesi gerektiği için daha yavaş gerçekleşmiştir. Kinetik çalışmada ise Fenton prosesinin her iki uygulamasının da ikinci derece kinetiğe uyduğu belirlenmiştir. 
Anahtar Kelimeler:

Atıksu, emaye kaplama, Fenton, KOİ

Treatment Of Enamel Coating Facility Wastewaters Via Conventional and Modified Fenton Processes

Enamel coating facility wastewaters include high concentrations of oil-grease, colour, chemical oxygen demand (COD) and heavy metals such as chromium, nickel, cadmium, iron and zinc. In this study, treatment of enamel coating facility wastewaters by conventional and modified Fenton process was investigated. The COD parameter was selected as the target parameter in the wastewater for both Fenton processes. The optimization of initial pH, catalyst iron concentration and hydrogen peroxide (H2O2) concentration was performed for an efficient treatment. Also change in COD concentration as a function of time under optimal conditions and kinetic studies were investigated. As a result of the study, optimum experimental conditions were determined as pH = 3, [Fe2+] = 150 mg/L and [H2O2] = 250 mg/L for conventional Fenton process and pH = 3, [Fe0] = 200 mg/L ve [H2O2] = 200 mg/L for modified Fenton process. Under these conditions, due to the abundant presence of reaction components in the reaction mixture, COD removal was occurred rapidly in the first 5 minutes of reaction period, and later on the removal rate and efficiency were decreased in the remained period because of the decreases in the Fenton reagents. COD removal via modified Fenton process was slower compared to the conventional Fenton process, since metallic iron had to solubilize first in the modified process. Consequently, it was determined that conventional Fenton process is an efficient process for the treatment of enamel coating facility wastewaters. The experimental data was fitted to second order kinetics for both Fenton processes. 

___

  • Özdemir, C., Karataş, M., Şahinkaya, S., Argun, M.E., “Physico-chemical studies of enamel cover industry wastewater”, Asian Journal of Chemistry, 21 (2), 964 – 970, 2009.
  • Gogate, P.R., Pandit, A.B., “A review of imperative technologies for wastewater treatment. I: Oxidation technologies at ambient conditions”, Advances in Environmental Research, 8, 501–551, 2004.
  • [3] Neyens, E., Baeyens, J., “A review of classic Fenton’s peroxidation as an advanced oxidation technique”, Journal of Hazardous Materials 98, 33 – 50, 2003.
  • [4] Ozdemir, C., Tezcan, H., Sahinkaya, S., Kalıpcı, E., “Pretreatment of olive oil mill wastewater by two different applications of Fenton oxidation processes”, Clean Soil Air Water, 38, 1152–1158, 2010.
  • [5] Guclu, D., Sirin, N., Sahinkaya, S., Sevimli, M.F., “Advanced treatment of coking wastewater by conventional and modified Fenton processes”, Environmental Progress and Sustainable Energy, 32, 176 – 180, 2013.
  • [6] Bremner, D. H., Burgess, A. E., Houllemare, D., Namkung, K. C., “Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide”, Applied Catalysis B: Environment, 63, 15–19, 2006.
  • [7] Arslan, I., Akmehmet Balcioglu, I., “Degradation of commercial reactive dyestuffs by heterogeneous and homogenous advanced oxidation processes: A comparative study, Dyes and Pigments, 43, 95–108, 1999.
  • [8] Azbar, N., Yonar, T., Kestioglu, K., “Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent”, Chemosphere, 55, 35–43, 2004.
  • [9] Kiril Mert, B., Yonar, T., Yalili Kilic, M., Kestioglu, K., “Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes”, Journal of Hazardous Materials, 174, 122–128, 2010.
  • [10] APHA, American Public Health Association, Standard Methods for Examinations of Water and Wastewater, 21th ed., American Public Health Association/ American Water Works Association/Water Environment Federation, Washington DC, USA, 2005.
  • Li, J.T., Song, Y.L., “Degradation of AR 97 Aqueous solution by combination of ultrasound and Fenton reagent”, Environmental Program and Sustainable Energy, 29, 101–106, 2009.
  • Kiril Mert, B., Yonar, T., Yalili Kilic, M.¸ Kestioglu, K., “Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes”, Journal of Hazardous Materials, 174, 122–128, 2010.
  • Walling, C., “Fenton’s reagent revisited”, Accounts of Chemical Researchs, 8, 125–131, 1975.
  • Bergendahl, J.A., Thies, T. P., “Fenton’s oxidation of MTBE with zero valent iron”, Water Research, 38, 327–334, 2004.
  • Kusic, H., Koprivanac, N., Srsan, L., “Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study”, Journal of Photochemistry and Photobiology A: Chemistry, 181, 195–202, 2006.