Dental Uygulamalarda Kullanılan Biyomalzemeler

Genel sağlık için ağız ve diş sağlığı oldukça önemlidir. Ağız ve diş hastalıkları dünyada en yaygın görülen sağlık problemlerinin başında gelmektedir. Diş eti hastalıkları; dişi çevreleyen ve dişi destekleyen kemiğe kadar ilerleyen, dişeti iltihabı ve diş problemlerini kapsamaktadır. Tedavi süresince dental birçok işlemde biyomalzeme kullanılmaktadır. Tedavinin etkinliğini değiştiren unsurlar arasında kullanılan malzemeler, malzemelerin kalitesi ve biyo-uyumu önem arz etmektedir. Vucüt dışarıdan yapısına katılan yabancı maddelere karşı tepki göstermesine rağmen, dokulara göre geliştirilmiş biyouyumluluk gösteren biyomalzemeleri kabul etmektedir. Doku ortamı içerisinde herhangi bir hasara karşı; yüzey konfigürasyonu geliştirme, dokuyu indükleme ve inflamasyona karşı red cevabı oluşturma, biyomalzemelerin en önemli fiziksel özellikleri arasındadır. Bu makale de amaç, dental uygulamalarda kullanılan biyomalzemeleri tanımlamak, sınıflandırmak ve görevlerini araştırmaktır.

Biomaterials in Used Dental Application

Oral and dental health is very important for overall health. Oral and dental diseases are among the most common health problems in the world. Gum diseases involve gingivitis and dental problems, extending to the surrounding and supporting bone. During treatment, biomaterials are used in many dental procedures. There are important factors that change the effectiveness of the treatment like the materials that are used, the quality of those materials, and their biocompatibility. Although the body reacts against foreign substances that are implanted into its structure, the body accepts the biocompatible biomaterials developed for tissues. Against any damage in the tissue environment, improving surface configuration, inducing tissue, and create a rejection to inflammation are among the most important physical properties of biomaterials. The aim of this article is to identify, classify and investigate the biomaterials used in dental practices.

___

  • 1. Lorenzo, J., M. Horowitz, and Y. Choi, Osteoimmunology: interactions of the bone and immune system. Endocr Rev, 2008. 29(4): p. 403-40.
  • 2. Gostemeyer, G., S.R. Baker, and F. Schwendicke, Barriers and facilitators for provision of oral health care in dependent older people: a systematic review. Clin Oral Investig, 2019
  • 3. Deb, S. and S. Chana, Biomaterials in Relation to Dentistry. Front Oral Biol, 2015. 17: p. 1-12.
  • 4. Niinomi, M., Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 2002(33): p. 477.
  • 5. Edgerton, M. and M.J. Levine, Biocompatibility: its future in prosthodontic research. J Prosthet Dent, 1993. 69(4): p. 406-15.
  • 6. Jorge, J.R., et al., Titanium in dentistry: historical development, state of the art and future perspectives. J Indian Prosthodont Soc, 2013. 13(2): p. 71-7.
  • 7. Chen, G.Z., D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000. 407(6802): p. 361-4.
  • 8. Hubalkova, H. and I. Linetskiy, New trends in prosthetic dentistry. Prague Med Rep, 2006. 107(2): p. 149-64.
  • 9. Zhang, F., et al., Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. J Biomed Mater Res B Appl Biomater, 2010. 94(2): p. 406-13.
  • 10. Hrabe, N.W. Characterization of cellular titanium for biomedical applications. 2010. 71-10, 6370;262.
  • 11. Juodzbalys, G., Sapragoniene, M., Wennerrberg, A, New Acid Etched Titanium Dental Implant Surface. Stomatologija, Baltic Dental and Maxillofacial Journal, 2003: p. 101-105.
  • 12. He, G., et al., Nanostructured Ti-based multi-component alloys with potential for biomedical applications. Biomaterials, 2003. 24(28): p. 5115-20.
  • 13. AB, A. ASTM F75 CoCr Alloy. 2007; Available from: http://www.arcam.com/wp-content/uploads/Arcam-ASTM-F75-Cobalt-Chrome.pdf.
  • 14. Donald A.NitkinDDS, M., Evaluation of alternative alloys to type III gold for use in fixed prosthodontics. The Journal of the American Dental Association1976. 93(3): p. 622-629.
  • 15. Vincent PF, S.L., Basford KE, A comparison of the casting ability of precious and nonprecious alloys for porcelain veneering. The Journal of Prosthetic Dentistry, 1977. 37(5): p. 527-536.
  • 16. Nilo A. Sampaio, J.W.J.S., Heloisa A. Acciari, Eduardo N. Codaro Study of Ni-Cr-Mo Alloys for Fixed Dental Prostheses in an Aqueous Solution of 0.05% NAF and in Commercial Mouthwashes. International Journal of Engineering and Innovative Technology (IJEIT), 2013. 2(12).
  • 17. H, A., Biyomalzemeler. Bilim ve Teknik, 2002: p. 2-11.
  • 18. Shenoy, A. and N. Shenoy, Dental ceramics: An update. J Conserv Dent, 2010. 13(4): p. 195-203.
  • 19. Melahat ÇELİK , C.B., Gülsen BAYRAKTAR, Diş Hekimliğinde Zirkonya Uygulamaları. J Dent Fac Atatürk Uni, 2014. 8: p. 106-116.
  • 20. Raghavan, R.N., Ceramics in Dentistry, in Sintering of Ceramics- New Emerging TechniquesMarch 2nd 2012.
  • 21. Guido Heydecke, M.S., Michael E Razzoog, Evolution and Use of Aluminum Oxide Single-Tooth Implant Abutments: A Short Review and Presentation of Two Cases. The International journal of prosthodontics, 2001. 15(5): p. 488-93.
  • 22. Pepla, E., et al., Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma), 2014. 5(3): p. 108-14.
  • 23. Ahmet Pasinli, R.S.A., Yapay Kemik Uygulamaları İçin Hidroksiapatit. Biyo Teknoloji Elektronik Dergisi, 2010. 1(1): p. 41-51.
  • 24. Hofmann, K.S.G.B.T.S.F.W.T.K.T., Ullmann's Encyclopedia of Industrial Chemistry2008, Ullmann’s Encyclopedia of Industrial Chemistry.
  • 25. Aytuğ, E.Ö., Kemik İçi Dental İmplantlarda Bağ Dokusu ve Kemik Birleşimi. G.Ü. Dişhek. Fak. Der., 1991. 3(2): p. 171-182.
  • 26. Depprich, R., et al., Osseointegration of zirconia implants: an SEM observation of the bone-implant interface. Head Face Med, 2008. 4: p. 25.
  • 27. Gaviria, L., et al., Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg, 2014. 40(2): p. 50-60.
  • 28. Glazer, B., Restoration of endodontically treated teeth with carbon fibre posts--a prospective study. J Can Dent Assoc, 2000. 66(11): p. 613-8.
  • 29. Iviglia, G., S. Kargozar, and F. Baino, Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater, 2019. 10(1).
  • 30. Gautam, R., et al., Biocompatibility of polymethylmethacrylate resins used in dentistry. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2012. 100B(5): p. 1444-1450.
  • 31. Park, S.E., M. Chao, and P.A. Raj, Mechanical properties of surface-charged poly(methyl methacrylate) as denture resins. Int J Dent, 2009. 2009: p. 841431.
  • 32. Badami, V. and B. Ahuja, Biosmart materials: breaking new ground in dentistry. ScientificWorldJournal, 2014. 2014: p. 986912.
  • 33. Polat, N.T., Polimetil Metakrilat (PMMA)'ların Cam Fiberler Güçlendirilmesi. Cumhuriyet Üniversitesi, 2002. 5(1): p. 41-45.
  • 34. Arıkan, A., Silikon ve Polieter Lastik Esaslı Ölçü Materyalleri G.Ü. Dişhek. Fak. Der. , 1986. 3(1): p. 213-224.