Microbial transformation of β-Caryophyllene and Longifolene by Wolfiporia extensa

Microbial transformation of β-Caryophyllene and Longifolene by Wolfiporia extensa

β-Caryophyllene and longifolene are sesquiterpenes with characteristic aroma properties, which are primary constituents of essential oils and important ingredients commonly used in food, perfumery, cosmetics, detergents and pharmaceuticals, which create a worldwide market. β-Caryophyllene and longifolene were converted through microbial biotransformation by using Wolfiporia extensa to a mixture of products over seven days at 25 oC to be evaluated as potential aroma and antimicrobial agents. The characterization of transformation products was carried out by comparison of their GC-MS spectra and retention indices with that of published data (Wiley, NIST and ADAMS databases). As a result, microbial transformation reactions produced various volatile compounds mainly consisting of ketones, aldehydes and alcohol-bearing derivatives of β-caryophyllene and longifolene.

___

  • Abraham, W. R., Hoffmann, H. M., Kieslich, K., Reng, G., & Stumpf, B. (1985). Microbial transformations of some monoterpenoids and sesquiterpenoids. Ciba Found Symp, 111, 146-160.
  • Adams, R. P. (1995). Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry. Carol Stream: Allured Publishing Corporation.
  • Andersen, F. A., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., . . . Snyder, P. W. (2010). Final report of the cosmetic ingredient review expert panel amended safety assessment of Calendula officinalis-derived cosmetic ingredients. Int. J. Toxicol., 29(Suppl. 4), 221S-243S. doi:10.1177/1091581810384883
  • Asakawa, Y., Ishida, T., Toyota, M., & Takemoto, T. (1986). Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits. Xenobiotica, 16(8), 753-767. doi:10.3109/00498258609043566
  • Berger, R. G., & Editor. (2007). Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability: Springer GmbH.
  • Bhattacharyya, P. K., Prema, B. R., Dhavalikar, R. S., & Ramchandran, B. V. (1963). Microbiological transformations of terpenes. IV. Structure of an anhydride obtained after fermentation of some terpenoid hydrocarbons by Aspergillus niger. Indian J. Chem., 1, 171-176.
  • Cao, Y., Zhang, R., Liu, W., Zhao, G., Niu, W., Guo, J., . . . Liu, H. (2019). Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli. Sci. Rep., 9(1), 1-10. doi:10.1038/s41598-018-36495-w
  • Choudhary, M. I., Siddiqui, Z. A., Nawaz, S. A., & Atta ur, R. (2006). Microbial Transformation and Butyrylcholinesterase Inhibitory Activity of (-)-Caryophyllene Oxide and Its Derivatives. J. Nat. Prod., 69(10), 1429-1434. doi:10.1021/np0680174
  • Dev, S. (1981). Aspects of longifolene chemistry. An example of another facet of natural products chemistry. Acc. Chem. Res., 14(3), 82-88. doi:10.1021/ar00063a004
  • Devi, J. R. (1979). Microbiological transformations of terpenes. Part XXVI. Microbiological transformation of caryophyllene. Indian J. Biochem. Biophys., 16(2), 76-79.
  • Fitjer, L., Malich, A., Paschke, C., Kluge, S., Gerke, R., Rissom, B., . . . Noltemeyer, M. (1995). Rearrangement of (-)-β-Caryophyllene. A Product Analysis and Force Field Study. J. Am. Chem. Soc., 117(36), 9180-9189. doi:10.1021/ja00141a009
  • Ford, R. A., Api, A. M., & Letizia, C. S. (1992). Longifolene. Food Chem. Toxicol., 30(Suppl.), 67S-68S. doi:10.1016/0278-6915(92)90241-C
  • Heinlein, A., & Buettner, A. (2012). Monitoring of biotransformation of hop aroma compounds in an in vitro digestion model. Food Funct., 3(10), 1059-1067. doi:10.1039/c2fo30061c
  • Ishida, T. (2005). Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem. Biodiversity, 2(5), 569-590. doi:10.1002/cbdv.200590038
  • Jennings, W., & Shibamoto, T. (1980). Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography: Academic Press.
  • Joglekar, S. S., Vora, M. A., Dhere, S. G., & Dhavilkar, R. S. (1968). Microbial transformations of terpenoids: citronellal, citral, eugenol, Δ3-carene, α-pinene, and longifolene. Indian Oil Soap J., 34(4), 85-88.
  • Johnston, C. (1989). The Wiley / NBS Registry of Mass Spectral Data, Volumes 1-7 (McLafferty, Fred W.; Stauffer, Douglas B.). Journal of Chemical Education, 66(10), A256. doi:10.1021/ed066pA256.3
  • Joulain, D., & Konig, W. (1998). The Atlas of Spectral Data of Sesquiterpene Hydrocarbons: E.B.-Verlag.
  • Khan, N. T., Atif, M., & Al-Aboudi, A. (2014). Microbial transformation of (-)-alloisolongifolene. Orient. J. Chem., 30(3), 941-945. doi:10.13005/ojc/300304
  • King, A. J., & Dickinson, J. R. (2003). Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res., 3(1), 53-62. doi:10.1111/j.1567-1364.2003.tb00138.x
  • Koenig, W. A., & D. Hochmuth, J. D. H. (2004). Terpenoids and Related Constituents of Essential Oils. MassFinder 3, Hamburg, Germany.
  • Kondjoyan, N., & Berdagué, J.-L. (1996). A compilation of relative retention indices for the analysis of aromatic compounds. INRA de Theix, France: Laboratoire Flaveur.
  • Noma, Y., Hashimoto, T., Uehara, S., & Asakawa, Y. (2010). Microbial transformation of isopinocampheol and caryophyllene oxide. Flavour Fragrance J., 25(3), 161-170. doi:10.1002/ffj.1988
  • Oda, S., Fujinuma, K., Inoue, A., & Ohashi, S. (2011). Synthesis of (-)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099-1 in a liquid-liquid interface bioreactor (L-L IBR). J. Biosci. Bioeng., 112(6), 561-565. doi:10.1016/j.jbiosc.2011.07.024
  • Rychlik, M., Schieberle, P., Grosch, W., Deutsche Forschungsanstalt für, L., Universität, M., & Institut für Lebensmittelchemie der, T. (1998). Compilation of odor thresholds, odor qualities and retention indices of key food odorants. Garching: Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universität München.
  • Schmitt, D., Levy, R., & Carroll, B. (2016). Toxicological evaluation of β-caryophyllene oil: subchronic toxicity in rats. Int. J. Toxicol., 35(5), 558-567. doi:10.1177/1091581816655303
  • Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., & Ojha, S. (2016). Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des., 22(21), 3237-3264. doi:10.2174/1381612822666160311115226
  • Wright, J. (2010). Creating and formulating flavours. In: Food Flavour Technology, Second Edition, Taylor A.J. and Linforth R.S.T., 1-23. doi:10.1002/9781444317770.ch1
  • Younis, N. S., & Mohamed, M. E. (2019). β-caryophyllene as a potential protective agent against myocardial injury: the role of toll-like receptors. Molecules, 24(10), 1929. doi:10.3390/molecules24101929