Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity

Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity

In this research, food (cheese, yoghurt) and animal (chicken) origin 39 Lactobacillus spp. and human origin (newborn faeces) three Bifidobacterium spp. were used. To designate the β-glycosidase enzyme and specific activities of the cultures, p-nitrophenyl-β-D glikopiranozit (p-NPG) was used as a substrate. The best specific activities between Lactobacilli cultures were observed at Lactobacillus rhamnosus BAZ78 (4.500 U/mg), L. rhamnosus SMP6-5 (2.670 U/mg), L. casei LB65 (3.000 U/mg) and L. casei LE4 (2.000 U/mg) strains. Bifidobacterium breve A28 (2.670 U/mg) and B. longum BASO15 (2.330 U/mg) strains belonging to the Bifidobacterium cultures had the highest specific activity capabilities. Optimization studies were performed to designate the impact of different pH, temperature, and carbon sources on the β-glucosidase enzyme of L. rhamnosus BAZ78 strain (β-Glu-BAZ78), which exhibits high specific activity. As optimum conditions, pH was detected as 7.5, the temperature as 30° C, and the carbon source as 2% glucose for the enzyme. Although the enzyme activity changed as the physiological conditions changed, the β-Glu-BAZ78 showed the highest specificity in the control groups.

___

  • Alvarez-Zúñiga, M.T., García, D.C., & Osorio, G. (2020). Effect of different carbon sources on the growth and enzyme production of a toxigenic and a non-toxigenic strain of Aspergillus flavus. Preparative Biochemistry & Biotechnology, 51(8), 769-779. https://doi.org/10.1080/10826068.2020.1858426.
  • Ariaeenejad, S., Nooshi-Nedamani, S., Rahban, M., K., Kavousi, Pirbalooti, A.G., Mirghaderi, S.S., Mohammadi, M., Mirzaei, M., & Salekdeh G.H. (2020). A Novel high glucose-tolerant β-Glucosidase: Targeted computational approach for metagenomic screening. Frontiers in Bioengineering and Biotechnology, 8, 813, https://doi.org/10.3389/fbioe.2020.00813.
  • Chen, A., Wang, D., Ji, R., Li, J., Gu, S., Tang, R., & Ji C. (2021). Structural and catalytic characterization of TsBGL, a β-Glucosidase from Thermofilum sp. ex4484_79. Frontiers in Microbiology, 12, 723678, https://doi.org/10.3389/fmicb.2021.723678.
  • Choi, Y.B., Kim, K.S., & Rhee, J.S. (2002). Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnology Letters, 24, 2113-2116. https://doi.org/10.1023/A:1021390120400.
  • Coulon, S., Chemarin, P., Gueguen, Y., Arnaud, A., & Galzy P. (1998). Purification and characterization of an intracellular beta-glucosidase from Lactobacillus casei ATCC 39. Applied Biochemistry and Biotechnology, 74 (2), 105-114. ISSN: 0273-2289.
  • Datta, R., Anand, S., Moulick, A., Baraniya, D., Pathan, S.I., Rejsek, K., Vranova, V., Sharma, M., Sharma, D., Kelkar, A., & Formanek P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31, 287-302. https://doi.org/10.1515/intag-2016-0049.
  • Dupont, A., Heinbockel, L., Brandenburg, K., & Hornef M.W. (2014). Antimicrobial peptides and the enteric mucus layer act in concert to protect the ıntestinal mucosa. Gut Microbes, 5(6), 761-765. https://doi.org/10.4161/19490976.2014.972238.
  • Esteve-Zarzoso, B., Manzaneres, P., Ramon, D., & Querol A. (1998). The role of non- saccharomyces yeasts in ındustrial winemaking. International Microbiology, 1(2), 143-148. https://doi.org/10.4061/2011/642460.
  • Gao, X., Zhang, M., Li, X., Han, Y., Wu, F., & Liu Y. (2018). The effects of feding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish & Shellfish Immunology. 78, 42-51. https://doi.org/10.1016/j.fsi.2018.04.010.
  • Garbacz K., (2022). Anticancer activity of lactic acid bacteria. Seminars in Cancer Biology. Seminars in Cancer Biology, 83, 3, 356-366. https://doi.org/10.1016/j.semcancer.2021.12.013
  • Grohmann, K., Manthey, J.A., Cameron, R.G., & Buslig, B.S. (1999). Purification of citrus peel juice and molasses. Journal of Agricultural and Food Chemistry, 47(12), 4859-4867. https://doi.org/10.1021/jf9903049.
  • Huang, R., Zhang, F., Yan, X., Qin, Y., Jiang, J., Liu, Y., & Song, Y. (2021). Characterization of the β-Glucosidase activity in indigenous yeast isolated from wine regions in China. Journal of Food Science, 86, 2327-2345. https://doi.org/0.1111/1750-3841.15741.
  • Kara, H.E., Sinan, S., & Turan, Y. (2011). Purification of beta-glucosidase from olive (Olea europaea L.) fruit tissue with specifically designed hydrophobic interaction chromatography and characterization of the purified enzyme. Journal of Chromatography B, 879 (19), 1507-1512. https://doi.org/10.1016/j.jchromb.2011.03.036.
  • Kılıç, Y., Yüksekdağ, Z.N., & Yüksekdağ, H. (2014). Beta-galactosidase enzyme activities of Lactobacillus ve Bifidobacterium genus. Journal of Food, 39(4), 1-8. https://doi.org/10.5505/gida.29491.
  • Koolman, J., & Roehm, K.H. (2005). Thieme Color Atlas of Biochemistry, 2nd Ed Thieme of Stuttgart, 209.
  • Kosmerl, E., Rocha-Mendoza, D., Ortega-Anaya, J., Jiménez-Flores, R., & García-Cano, I. (2021). Improving human health with milk fat globule membrane, lactic acid bacteria, and bifidobacteria. Microorganisms, 9(2), 341. https://doi.org/10.3390/microorganisms9020341.
  • Kumar, S., Pattanaik, A.K., Sharma, S. Jadhav, S.E., Dutta, N., & Kumar, A. (2017). Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and ıts ımpact on select gut health indices and immune response of dogs. Probiotics Antimicrob Proteins, https://doi.org/10.1007/s12602-017-9256-z.
  • Lenz, A.R., Balbinot, E., Oliveira, N.S., Abreu, F.P., Casa, P.L., Camassola, M., Perez-Rueda, E., Silva, S.A., & Dillon, A.J.P. (2022). Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: A genome-wide comparative study of the fungal lignocellulolytic system. Gene, 822, 146345. https://doi.org/https://doi.org/10.1016/j.gene.2022.146345.
  • Lu, C., Li, F., Yan, X., Mao, S., & Zhang, T. (2022). Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction. Food Chemistry, 378, 132032. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.132032.
  • Maldonado, J., Gil-Campos, M., Maldonado-Lobón, J.A., Benavides, M.R., Flores-Rojas, K., Jaldo, R., Jiménez del Barco, I., Bolívar, V., Valero, A.D., Prados, E., Peñalver, I., & Olivares, M. (2019). Evaluation of the safety, tolerance and efficacy of 1-year consumption of ınfant formula supplemented with Lactobacillus fermentum CECT5716 Lc40 or Bifidobacterium breve CECT7263: A randomized controlled trial. BMC Pediatric, 19, 361. https://doi.org/10.1186/s12887-019-1753-7.
  • Marazza, J.A., Garro, M.S., & Giori, G.S. (2009). Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiology, 26, 333-339. https://doi.org/10.1016/j.fm.2008.11.004.
  • Meng, F., Yang, S., Wang, X., Chen, T., Wang, X., Tang, X., Zhang, R., & Shen, L. (2017). Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. Journal of Infection and Public Health, 10(6), 749-754. https://doi.org/http://dx.doi.org/10.1016/j.jiph.2016.11.013.
  • Modrackova, N., Vlkova, E., Tejnecky, V., Schwab, C., & Neuzil‐Bunesova, V. (2020). Bifidobacterium β‐Glucosidase activity and fermentation of dietary plant glucosides are species and strain-specific. Microorganisms, 8, 839. https://doi.org/10.3390/microorganisms8060839.
  • Naidu, A.S., Bidlack, W.R., & Clemens, R.A. (1999). Probiotic spectra of lactic acid bacteria (LAB). Critical Reviews in Food Science and Nutrition, 39:1, 13-126. https://doi.org/10.1080/10408699991279187.
  • O’Callaghan, A., & van Sinderen D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2016.00925.
  • Pamuk, F. (2011). Biyokimya. Gazi Kitabevi, Ankara, Türkiye, 272s.
  • Pang, P., Cao, L-c., Liu, Y-h., Xie, W., & Wang, Z. (2017). Structures of a glucose-tolerant β-glucosidase provide insights into its mechanism. Journal of Structural Biology, 198(3), 154-162. http://dx.doi.org/10.1016/j.jsb.2017.02.001.
  • Seidel, Z.P., & Lee, T. (2020). Enhanced activity of the cellulase enzyme β‑Glucosidase upon addition of an azobenzene-based surfactant. ACS Sustainable Chemistry and Engineering, 8, 4, 1751-1761. https://doi.org/10.1021/acssuschemeng.9b05240.
  • Sener, A. (2015). Extraction, partial purification and determination of some biochemical properties of β–glucosidase from Tea Leaves (Camellia sinensis L.). Journal of Food Science and Technology, 52(12), 8322-8328. https://doi.org/10.1007/s13197-015-1915-z.
  • Sestelo, A.B.F., Poza, M., Viilla T.G. (2004). β-Glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology & Biotechnology, 20, 633-637.
  • Singh, G., Verma, A.K., & Kumar, V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotechnology, 6:3. https:/doi.org/10.1007/s13205-015-0328-z.
  • Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technology. 127(1), 500-7. https://doi.org/10.1016/j.biortech.2012.09.012.
  • Strahsburger, E., Lacey, M.L.L., Marotti, I., DiGioia, D., Biavati, B., & Dinelli, G. (2017). In vivo assay to identify bacteria with β-glucosidase activity. Electronic Journal of Biotechnology, 30, 83-87. https://doi.org/10.1016/j.ejbt.2017.08.010.
  • Tamaki, F.K., Souza, D.P., Souza, V.P., Ikegami, C.M., Farah, C.S., & Marana, S.R. (2016). Using the amino acid network to modulate the hydrolytic activity of β-Glycosidases. PLoS One, 11(12). http://doi.org/10.1371/journal.pone.0167978.
  • Temizkan, G., Yılmazer, S., Öztürk, M., Arı, Ş., Ertan, H., Sarıkaya, A.T., & Arda, N. (2008). Moleküler Biyolojide Kullanılan Yöntemler. İstanbul Üniversitesi Biyoteknoloji ve Genetik Mühendisliği Araştırma ve Uygulama Merkezi (Biyogem) Yayın, Nobel Tıp Kitapevleri, 345s.
  • Teugjas, H., & Väljamäe, P. (2013). Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels and Bioproducts, 6, 105. https://doi.org/ http://www.biotechnologyforbiofuels.com/content/6/1/105.
  • Tsangalis, D., Ashton, J.F., Mcgill, A.E.J., & Shah, N.P. (2002). Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase producing bifidobacteria. Journal of Food Science, 67, 8, 3104-3113. https://doi.org/10.1111/j.1365-2621.2002.tb08866.x.
  • Yüksekdag, Z., Cinar Acar, B., Aslim, B., & Tukenmez, U. (2018). β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. International Journal of Food Properties, 20, S3. S2878-2886. https://doi.org/10.1080/10942912.2017.1382506.
  • Yüksekdag, H., & Yuksekdag, Z. (2021). Beta-galactosidase activity in Lactobacillus delbrueckii subsp. bulgaricus ZN541 and Streptococcus thermophilus Z1052 strains and optimization. The Journal of Food, 46(6), 1331-1342. https://doi.org/10.15237/gida.GD21059.
  • Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnology Biofuels, 11:51. https://doi.org/10.1186/s13068-018-1045-8.
  • Zhu, L., Mu, T., Ma, M., Sun, H., & Zhao, G. (2022). Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chemistry, 374, 131500. https://doi.org/10.1016/j.foodchem.2021.131500.