Artificial Photosynthesis with Titania Photocatalysts

Artificial Photosynthesis with Titania Photocatalysts

Increasing energy demand and global warming due to extensive use of fossil fuels will soon force mankind to use clean and sustainable fuels and artificial photosynthesis is being considered as a promising solution to both problems. Photocatalysis is a light induced process involved in artificial photosynthesis and it will make a great contribution to the solution of environmental problems and generation of renewable energy sources. Titania based photocatalytic materials are one of the widely used materials in artificial photosynthesis research due to their unique chemical and optical properties. Recent research have shown that the activity of titania phases can be improved in the visible light region by several modification techniques. This paper aims to present a brief review based on the last 2 decades of global research on the preparation and modification of titania based photocatalysts, their application and importance in artificial photosynthesis and its effect on reducing global warming by generating a sustainable energy source. This review is mostly based on the PhD thesis of the corresponding author (Yurtsever, 2015).

___

  • Akpan, U.G., Hameed, B.H. (2010). The advancements in sol–gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General, 375, 1-11.
  • Anpo, M., Kamat, P.V., (2010). Environmentally benign photocatalysts applications of titanium oxide-based materials. USA: Springer.
  • Baiju, K.V., Periyat, P., Wunderlich, W., Krishna Pillai, P., Mukundan, P., Warrier, K.G.K. (2007). Enhanced photoactivity of neodymium doped mesoporous titania synthesized through aqueous sol–gel method. Journal of Sol-Gel Science and Technology, 43, 283-290.
  • Bellardita, M., Addamo, M., Di Paola, A., Palmisano, L. (2007). Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chemical Physics, 339, 94-103.
  • Butburee, T., Sun, Z., Centeno, A., Xie, F., Zhao, Z., Wu, D. et al. (2019). Improved CO2 photocatalytic reduction using a novel 3-component heterojunction. Nano Energy, 62, 426-433.
  • Choudhury, B., Borah, B., Choudhury, A. (2013). Ce–Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Materials Science and Engineering: B, 178, 239-247.
  • Cogdell, R.J., Brotosudarmo, T.H.P., Gardiner, A.T., Sanchez, P.M., Cronin, L. (2010). Artificial photosynthesis – solar fuels: current status and future prospects. Biofuels, 1, 861-876.
  • Collings, A.F., Critchley, C., (2005). Artificial photosynthesis from basic biology to industrial application. Germany: Wiley-VCH.
  • Cong, Y., Zhang, J., Chen, F., Anpo, M. (2007). Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C, 111, 6976-6982.
  • Crake, A., Christoforidis, K. C., Kafizas, A., Zafeiratos, S., & Petit, C. (2017). CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 210, 131-140.
  • Dong, F., Guo, S., Wang, H., Li, X., Wu, Z. (2011). Enhancement of the visible light photocatalytic activity of c-doped TiO2 nanomaterials prepared by a green synthetic approach. The Journal of Physical Chemistry C, 115, 13285-13292.
  • Dugandžić, I.M., Jovanović, D.J., Mančić, L.T., Zheng, N., Ahrenkiel, S.P., Milošević, O.B., Šaponjić, Z.V., Nedeljković, J.M. (2012). Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption. Journal of Nanoparticle Research. 14, 1-11.
  • Factorovich M., Guz L., Candal R. (2011). N-TiO2: chemical synthesis and photocatalysis. Advances in Physical Chemistry, 2011, 821204.
  • Fujishima, A., Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37-38.
  • Gan, P., Liu, F., Li, R., Wang, S., & Luo, J. (2019). Chloroplasts-beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. International Journal of Molecular Sciences, 20(20), 5046.
  • Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 05, 441-458.
  • Haggerty, J.E.S., Schelhas, L.T., Kitchaev, D.A. (2017). High-fraction brookite films from amorphous precursors. Scientific Reports, 7, 15232.
  • Hammarstrom, L., Hammes-Schiffer, S. (2009). Artificial photosynthesis and solar fuels. Accounts of Chemical Research, 42, 1859-1860.
  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69-96.
  • Houghton, J. (2004). Global warming the complete briefing. USA: Cambridge University Press.
  • Inoue, T., Fujishima, A., Konishi, S., Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637-638.
  • Kaneko, M., Okura I. (2002). Photocatalysis : science and technology. Kodansha: Springer.
  • Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89, 494-502.
  • Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., Čapek, L., Hospodková, A., Šolcová, O. (2010). Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 96, 239-244.
  • KočÍ, K., ZatloukalovÁ, K., ObalovÁ, L., KrejČÍKovÁ, S., LacnÝ, Z., ČApek, L., HospodkovÁ, A., ŠOlcovÁ, O. (2011). Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst. Chinese Journal of Catalysis, 32, 812-815.
  • Kumar, S., Karthikeyan, S., Lee, A.F. (2018). g-c3n4-based nanomaterials for visible light-driven photocatalysis. Catalysts, 8, 74.
  • Li, F.B., Li, X.Z., Hou, M.F. (2004). Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control. Applied Catalysis B: Environmental, 48, 185-194.
  • Linsebigler, A.L., Lu, G., Yates, J.T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected Results. Chemical Reviews, 95, 735-758.
  • Magesh, G., Viswanathan, B., Viswanath, R.P., Varadarajan, T.K. (2009). Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian Journal of Chemistry, 48A, 480-488.
  • Matějová, L., Kočí, K., Reli, M., Čapek, L., Hospodková, A., Peikertová, P., Matěj, Z., Obalová, L., Wach, A., Kuśtrowski, P., Kotarba, A. (2014). Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, 152-153, 172-183.
  • Nassoko, D., Li, Y.-F., Li, J.-L., Li, X., Yu, Y. (2012). Neodymium-doped TiO2 with anatase and brookite two phases: mechanism for photocatalytic activity enhancement under visible light and the role of electron. International Journal of Photoenergy, 2012, 1-10.
  • Nie, X., Zhuo, S., Maeng, G., Sohlberg, K. (2009). Doping of TiO2 polymorphs for altered optical and photocatalytic properties. International Journal of Photoenergy, 2009, 1-22.
  • Obregón, S., Kubacka, A., Fernández-García, M., Colón, G. (2013). High-performance Er3+–TiO2 system: Dual up-conversion and electronic role of the lanthanide. Journal of Catalysis, 299, 298-306.
  • Ogura, K., Kawano, M., Yano, J., Sakata, Y. (1992). Visible-light-assisted decomposition of H2O and photomethanation of CO2 over CeO2-TiO2 catalyst. Journal of Photochemistry and Photobiology A: Chemistry. 66, 91-97.
  • Ozcan, O., Yukruk, F., Akkaya, E., Uner, D. (2007). Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Applied Catalysis B: Environmental, 71, 291-297.
  • Park, J.H., Kim, S., Bard, A.J. (2006). Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters. 6, 24-28.
  • Raja, K.S., Smith, Y.R., Kondamudi, N., Manivannan, A., Misra, M., Subramanian, V. (2011). CO2 photoreduction in the liquid phase over pd-supported on TiO2 nanotube and bismuth titanate photocatalysts. Electrochemical and Solid-State Letters, 14, F5-F8.
  • Rajalakshmi, K., Jeyalakshmi, V., Krishnamurthy, K.R., Viswanathan, B. (2012). Photocatalytic reduction of carbon dioxide by water on titania: role of photophysical and structural properties. Indian Journal of Chemistry. 51A, 411-419.
  • Ranjit, K.T., Willner, I., Bossmann, S.H., Braun, A.M. (2001). Lanthanide oxide doped titanium dioxide photocatalysts: effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. Journal of Catalysis. 204, 305-313.
  • Rohde, Robert A., Solar radiation spectrum, (http://www.globalwarmingart.com/), licence: https://creativecommons.org/licenses/by-sa/3.0/deed.en.
  • Rockafellow, E.M., Stewart, L.K., Jenks, W.S. (2009). Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation?. Applied Catalysis B: Environmental. 91, 554-562.
  • Sasirekha, N., Basha, S., Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental. 62, 169-180.
  • Shen, H., Mi, L., Xu, P., Shen, W., Wang, P.-N. (2007). Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Applied Surface Science. 253, 7024-7028.
  • Shi, H., Long, S., Hu, S., Hou, J., Ni, W., Song, C. et al. (2019). Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 245, 760-769.
  • Silija, P., Yaakob, Z., Suraja, V., Binitha, N.N., Akmal, Z.S. (2012). An enthusiastic glance in to the visible responsive photocatalysts for energy production and pollutant removal, with special emphasis on titania. International Journal of Photoenergy. 2012, 1-19.
  • Tahir, M., Amin, N.S. (2013). Recycling of carbon dioxide to renewable fuels by photocatalysis: prospects and challenges. Renewable and Sustainable Energy Reviews. 25, 560-579.
  • Tan, J.Z.Y., Fernández, Y., Liu, D., Maroto-Valer, M., Bian, J., Zhang, X. (2012). Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chemical Physics Letters. 531, 149-154.
  • Tseng, I.H., Chang, W.-C., Wu, J.C.S. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental. 37, 37-48.
  • Tseng, T.K., Lin, Y.S., Chen, Y.J., Chu, H. (2010). A review of photocatalysts prepared by sol-gel method for VOCs removal. International Journal of Molecular Sciences. 11, 2336-2361.
  • Uner, D., Oymak, M.M., İpek, B. (2011). CO2 utilisation by photocatalytic conversion to methane and methanol. International Journal of Global Warming. 3, 142-162.
  • Wang, Y., Li, B., Zhang, C., Cui, L., Kang, S., Li, X., Zhou, L. (2013). Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental. 130-131, 277-284.
  • Wang, M., Wang, D., & Li, Z. (2016). Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 183, 47-52.
  • Wei, Y., Jiao, J., Zhao, Z., Liu, J., Li, J., Jiang, G. et al. (2015). Fabrication of inverse opal TiO2-supported Au@CdS core–shell nanoparticles for efficient photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 179, 422-432.
  • Wojtowicz, J.A. (2001). The carbonate system in swimming pool water. Journal of the Swimming Pool and Spa Industry. 4, 54-59.
  • Wu, J.C.S., Lin, H.-M., Lai, C.-L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General. 296, 194-200.
  • Xiao, Q., Si, Z., Zhang, J., Xiao, C., Yu, Z., Qiu, G. (2007). Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. Journal of Materials Science. 42, 9194-9199.
  • Xiong, Z., Wang, H., Xu, N., Li, H., Fang, B., Zhao, Y. et al. (2015). Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. International Journal of Hydrogen Energy, 40(32), 10049-10062.
  • Xu, F., Zhang, J., Zhu, B., Yu, J., & Xu, J. (2018). CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 230, 194-202.
  • Yang, G., Jiang, Z., Shi, H., Xiao, T., Yan, Z. (2010). Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry. 20, 5301.
  • Yoneyama, H. (1997). Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today. 39, 169-175.
  • Yurtsever, H. A., (2015). Preparation and characterization of titania based powders and suspensions for photocatalytic applications. PhD Thesis, Graduate School of Engineering and Sciences of Izmir Institute of Technology.
  • Yurtsever, H. A., Çiftçioğlu, M. (2018). The effect of powder preparation method on the artificial photosynthesis activities of neodymium doped titania powders. International Journal of Hydrogen Energy, 43(44), 20162-20175.
  • Zaleska, A. (2008). Doped-TiO2: a review. Recent Patents on Engineering. 2, 157-164.
  • Zang, L., (2011). Energy efficiency and renewable energy through nanotechnology. USA: Springer.
  • Zhang, Q.-H., Han, W.-D., Hong, Y.-J., Yu, J.-G. (2009). Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catalysis Today. 148, 335-340.
  • Zhao, Z., Fan, J., Wang, J., Li, R. (2012). Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst. Catalysis Communications. 21, 32-37.
  • Zhu, J., Zäch, M. (2009). Nanostructured materials for photocatalytic hydrogen production. Current Opinion in Colloid & Interface Science. 14, 260-269.