A Bioactive dihydroflavonol-3-O-α-L-rhamnoside from Bracystelma togoense Schtlr

A Bioactive dihydroflavonol-3-O-α-L-rhamnoside from Bracystelma togoense Schtlr

A compound isolated from the MeOH extract Brachystelma togoense showed activity against some pathogenic microorganisms which included Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Salmonella typhi, and Candida albicans ˂ 3 mg/ml. The compound had minimum inhibitory concentration ranging from 0.18 to 0.75mg/ml and minimum bactericidal concentration ranging from 0.75 to 1.50 mg/ml. The compound, dihydroflavonol-3-O-α-L-rhamnoside was identified using 1D and 2D NMR spectroscopic methods and mass spectrometry and by comparison with literature data. The compound is reported for the first time from Brachystelma togoense.

___

  • Bello, I.A., Ndukwe, G.I., Audu, O.T., Habila, J.D., 2011a. A bioactive flavonoid from Pavetta crassipes K. Schum. Organic and Medicinal Chemistry Letters 1, 14.
  • Bello, I.A., Ndukwe, G.I., Audu, O.T., Habila, J.D., 2011b. A bioactive flavonoid from Pavetta crassipes K . Schum. Organic and Medicinal Chemistry Letters 1:14, 10–15.
  • Britto, S.J., Bruyns, P. V, 2016. Three new species of Brachystelma from Tamil Nadu, India. Haseltonia 48–54.
  • Bruyns, P. V, 2009. Three New Species of Brachystelma (Apocynaceae, Asclepiadoideae, Ceropegieae) from South Tropical and Southern Africa. SPIE.
  • CLSI. Performing Standards for Antimicrobial Susceptibility Testing, Clinical and Laboratory Standards Institute, 2017:32, n.d. PL, 27 th. ed.
  • Cushnie, T.P.T., Lamb, A.J., 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26, 343–356.
  • De Britto, J., Soosai Manickam, V., Gopalakrishnan, S., Ushioda, T., Tanaka, N., 1995. Chemical and chemotaxonomical studies of ferns. Determination of aglycone chirality in dihydroflavonol 3-O-.ALPHA.-L-rhamnosides by 1H-NMR spectroscopy.
  • Ekalu, A., Ayo, R.G., Habila, J.D., Hamisu, I., 2019. Phaeophytin and Triterpenoids from Brachystelma togoense Schltr , a Nigerian Medicinal Herb. Asian Journal of Chemical Sciences 6, 1–5.
  • Jamshidi-kia, F., Lorigooini, Z., Amini-khoei, H., 2018. Medicinal plants : Past history and future perspective. Journal of Herbmed Pharmacology 7, 1–7.
  • Kew Royal Botanical Gardens, 2019. Electronic Plant Information Centre (ePIC) [WWW Document]. URL http://epic.kew.org/index.htm (accessed 2.7.19).
  • Kumar, S., Pandey, A.K., 2013. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal 2013, 1–3. https://doi.org/10.1016/S1572-5995(05)80065-1
  • Medeiros, A.A.N., Medeiros, F.A., Queiroz, T.M., Tavares, J.F., Silva, M.S., Medeiros, I.A., 2010. Artigo rhamnoside from Pradosia huberi ( Ducke ) Ducke on rat isolated mesenteric arteries. Animals 20, 542–548.
  • Niaz, S.I., Zhang, P., Shen, H., Li, J., Chen, B., Chen, S., Liu, L., He, J., 2018. Two new isochromane derivatives penisochromanes A and B from ascidian-derived fungus Penicillium sp. 4829. Natural Product Research 6419, 1–7.
  • Ollerton, J., Masinde, S., Meve, U., Picker, M., Whittington, A., 2009. Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Annals of Botany 103, 1501–1514.
  • Taleb-Contini, S.H., Salvador, M.J., Watanabe, E., Ito, I.Y., Oliveira, D.C.R. de, 2003. Antimicrobial activity of flavonoids and steroids isolated from two Chromolaena species. Revista Brasileira de Ciências Farmacêuticas 39, 403–408.
  • Xiao, J., Kai, G., 2012. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Critical Reviews in Food Science and Nutrition 52, 85–101.
  • Xie, Y., Yang, W., Tang, F., Chen, X., Ren, L., 2015. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current medicinal chemistry 22, 132–49.
  • Xueyan, R., Jia, Y., Xuefeng, Y., Lidan, T., Qingjun, K., 2018. Isolation and purification of five phenolic compounds from the Xinjiang wine grape (Vitis Vinifera) and determination of their antioxidant mechanism at cellular level. European Food Research and Technology 244, 1569–1579. https://doi.org/10.1007/s00217-018-3070-z