Hatay sarısı ırkı ipekböceği (Bombyx mori L.) ile ilişkili bakteri çeşitliliği: İzolasyon, teşhis ve karakterizasyon
Nesli tükenme tehlikesiyle karşı karşıya olan Hatay sarı ırkı ipekböceği (Bombyx mori L.), Türkiye'nin en önemli yerel kültür miraslarından biridir. İpekböceğinin bakteriyel patojenleri son derece yıkıcı olup, çoğunlukla akut hastalıklara neden olurlar. Bu çalışmanın amacı, Hatay sarı ırkının enfekteli ve ölü larvalarında bakteri çeşitliliğini ve potansiyel patojenik bakteri türlerini belirlemektir. Hatay sarı ırkından izole edilen toplam 16 bakteri izolatı morfolojik, biyokimyasal ve moleküler özelliklerine göre tanılanmıştır. Hatay sarı ırkının enfekteli ve ölü larvalarından izole edilen bakteri izolatları Staphylococcus sp. (BM-1), Staphylococcus xylosus (BM-5), Staphylococcus succinus (BM-7), Bacillus thuringiensis (BM-8), Bacillus subtilis (BM-9), Bacillus sp. (BM-10), Staphylococcus saprophyticus (BM-16, BM-19), Klebsiella sp. (BM-17), Staphylococcus arlettae (BM-18), Pseudomonas aeruginosa (BM-20), Enterococcus mundtii (BM-21), Pantoea agglomerans (BM-22), Kluyvera intermedia (BM-23), Serratia sp. (BM-24), Mammaliicoccus sciuri (BM-25) olarak belirlenmiştir. Bakteri yoğunluğu ve tür sayısının fazla olması Hatay sarı ırkının bakteriyel hastalıklara karşı son derece duyarlı olduğunu göstermektedir. İnsektisidal etkinlik çalışmaları, Bacillus ve Staphylococcus cinslerine ait türlerin hibrit ipekböceği kültürü ve Hatay sarı ırkında önemli patojenleri olduğunu ortaya koymuştur.
Bacterial diversity associated with the Hatay yellow strain silkworm (Bombyx mori L.): Isolation, identification and characterization
The Hatay yellow strain silkworm (Bombyx mori L.), which is in danger of extinction, is one of the most important local cultural heritages of Türkiye. Bacterial pathogens of silkworm are highly destructive and cause mostly acute diseases. The aim of this study was to determine the bacterial diversity and potential pathogenic bacterial species in infected and dead larvae of Hatay yellow race. A total of 16 bacterial isolates from Hatay yellow race were identified according to their morphological, biochemical and molecular characteristics. The bacterial isolates isolated from infected and dead larvae of Hatay yellow race were Staphylococcus sp. (BM-1), Staphylococcus xylosus (BM-5), Staphylococcus succinus (BM-7), Bacillus thuringiensis (BM-8), Bacillus subtilis (BM-9), Bacillus sp. (BM-10), Staphylococcus saprophyticus (BM-16, BM-19), Klebsiella sp. (BM-17), Staphylococcus arlettae (BM-18), Pseudomonas aeruginosa (BM-20), Enterococcus mundtii (BM-21), Pantoea agglomerans (BM-22), Kluyvera intermedia (BM-23), Serratia sp. (BM-24), Mammaliicoccus sciuri (BM-25). The high bacterial density and number of species indicate that Hatay yellow race is highly susceptible to bacterial diseases. Insecticidal activity studies revealed that species belonging to Bacillus and Staphylococcus genera are important pathogens of hybrid silkworm culture and Hatay yellow race.
___
- Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403e410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Ayoade, F., Oyejide, N.E., & Fayemi, S.O. (2014). Isolation, identification, antibiogram and characterization of bacterial pathogens of the silkworm, Bombyx mori in South-West Nigeria. Journal of Biological Sciences, 14, 425-430. https://doi.org/10.3923/jbs.2014.425.430
- Banerjee, A., & Dangar, T.K. (1995). Pseudomonas aeruginosa, a facultative pathogen of red palm weevil, Rhynchophorus ferrugineus. World Journal of Microbiology and Biotechnology, 11, 618-620. https://doi.org/10.1007/BF00361002
- Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., & Sayers, E.W. (2013). GenBank. Nucleic Acids Research, 41, 36-42. https://doi.org/10.1093/nar/gks1195
- Bindroo, B.B., & Moorthy, S.M. (2014). Genetic divergence, implication of diversity, and conservation of silkworm, Bombyx mori. International Journal of Biodiversity, 2014, 15. https://doi.org/10.1155/2014/564850
- Chopade, P., Raghavendra, C.G., & Bhaskar, R.N. (2021). Assessment of diseases in Bombyx mori silkworm–A survey. Global Transitions Proceedings, 2 (1), 133-136. https://doi.org/10.1016/j.gltp.2021.01.019
- Claus, D. (1992). A standardized gram staining procedure. World Journal of Microbiology and Biotechnology, 8, 451-452. https://doi.org/10.1007/BF01198764
- Demir, I., Eryuzlu, E., & Demirbag, Z. (2012). A study on the characterization and pathogenicity of bacteria from Lymantria dispar L. (Lepidoptera: Lymantriidae). Turkish Journal of Biology, 36, 459-468. https://doi.org/10.3906/biy-1107-18
- Eski, A., Demir, I., Güllü, M., & Demirbag, Z. (2018). Biodiversity and pathogenicity of bacteria associated with the gut microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Microbial Pathogenesis, 121, 350-358. https://doi.org/10.1016/j.micpath.2018.05.012
- Eski, A., Demirbag, Z., & Demir, I. (2019). Microencapsulation of an indigenous isolate of Bacillus thuringiensis by spray drying. Journal of Microencapsulation, 36, 1-9. https://doi.org/10.1080/02652048.2019.1572238
- Gokce, C., Sevim, A., Demirbag, Z., & Demir, I. (2010). Isolation, characterization and pathogenicity of bacteria from Rhynchites bacchus (Coleoptera: Rhynchitidae). Biocontrol Science and Technology, 20 (9), 973-982. https://doi.org/10.1080/09583157.2010.498083
- He, C., Nan, X., Zhang, Z., & Li, M. (2013). Composition and diversity analysis of the gut bacterial community of the Oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques. Journal of Insect Science, 13, 165. https://doi.org/10.1673/031.013.16501
- İleri, B. (2019). Hatay’da İpeğin Tarihi. Hatay Araştırmaları IV. Kültür Bakanlığı Yayınları, Ankara 85-96.
Jiang, Y.L. (1982). The Origination and Differentiation of Domesticated Silkworms. Jiangsu Scientific and Technical Press, Nanjing.
- Karthikairaj, K., Prasannakumar, K., & Isaiarasu, L. (2013). Use of plant extracts fort he control of flecherie disease in silkworm, Bombyx mori L. (Lepidoptera: Bombicidae). International Journal of Microbiology Research, 4, 158-161. https://doi.org/10.5829/idosi.ijmr.2013.4.2.72105
- Krieg, N.R. (2001) Identification of Procaryotes. Bergey's Manual® of Systematic Bacteriology. Springer New York Publisher, New York, 33-38.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
- Li, A., Zhao, Q., Tang, S., Zhang, Z., Pan, S., & Shen, G. (2005). Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Journal of Genetics, 84, 137-142. https://doi.org/10.1007/BF02715839
- Mishra, S.A. (2017). Diseases of silk warm (Bombyx mori) and protocol for treatment. International Journal of Zoology, 2, 116-118.
- Nataraju, B., Sathyaprasad, K., Manjunatha, D., & Aswani Kumar, C. (2005). A Text Book on Silkworm Crop Protection. Central Silk Board Publisher, Banglore.
- Ozkan-Cakici, F., Ozgen, I., Bolu, H., Erbas, Z., Demirbag, Z., & Demir, I. (2015). Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae: isolation of bacteria and their insecticidal activities. World Journal of Microbiology and Biotechnology, 31, 59-67. https://doi.org/10.1007/s11274-014-1764-3
- Pineda-Castellanos, M.L., Rodríguez-Segura, Z., Villalobos, F.J., Hernández, L., Lina, L., & Nuñez-Valdez, M.E. (2015). Pathogenicity of isolates of Serratia marcescens towards larvae of the scarab Phyllophaga blanchardi (Coleoptera). Pathogens, 4 (2), 210-228. https://doi.org/10.3390/pathogens4020210
- Reynolds, J., Moyes, R., & Breakwell, D.P. (2009). Differential staining of bacteria: endospore stain. Current Protocols in Microbiology, Appendix 3J. https://doi.org/10.1002/9780471729259.mca03js15
- Saad, M.S., Elyamani, E.M., & Helaly, W.M. (2019). Controlling of bacterial and fungal diseases that contaminating mulberry silkworm, Bombyx mori by using some plant extracts. Bulletin of the National Research Centre, 43 (1), 1-9. https://doi.org/10.1186/s42269-019-0218-3
- Secil, E.S., Sevim, A., Demirbag, Z., & Demir, I. (2012). Isolation, characterization and virulence of bacteria from Ostrinia nubilalis (Lepidoptera: Pyralidae). Biologia, 67 (4), 767-776. https://doi.org/10.2478/s11756-012-0070-5
- Sevim, A., Eryuzlu, E., Demirbag, Z., & Demir, I. (2012). A Novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp. kurstaki. Journal of Microbiology and Biotechnology, 22 (1), 137-144. https://doi.org/10.4014/jmb.1108.08061
- Sharma, A., Sharma, P., Thakur, J., Murali, S., & Bali, K. (2020). Viral diseases of mulberry silkworm, Bombyx mori L. - A review. Journal of Pharmacognosy and Phytochemistry, 9 (2), 415-423.
- Sneath, P.H.A. (2001). Numerical Taxonomy. Bergey's Manual® of Systematic Bacteriology, Springer New York Publisher, New York, 39-42.
- Ulaşlı, B., İleri, B., & Can, F. (2021). Hatay yellow strain (Bombyx mori L.) under the threat of extinction: Determination of morphological and biological features with some reviews. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26 (2), 266-27. https://doi.org/10.37908/mkutbd.860085
- Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
- Zhang, J., Rajkhowa, R., Li, J.L., Liu, X.Y., & Wang, X.G. (2013). Silkworm cocoon as natural material and structure for thermal insulation. Materials & Design, 49, 842-849. https://doi.org/10.1016/j.matdes.2013.02.006