Şiddetli Jeomanyetik Fırtınanın Gece Yarısı İyonosfer Üzerindeki Etkisinin ROTI Aracılığıyla İncelenmesi

Bu çalışmada, 6 Eylül 2017'deki X-9 ışımaları ile ilişkili koronal kütle boşalmalarının erken ulaşması ile 07-08 Eylül 2017 tarihlerinde Dünya'nın iyonosferindeki yoğun jeomanyetik fırtınanın etkisi ROTI, Toplam Elektron İçerik (TEC) indeksinin oranı (Rate of TEC Index-ROTI) aracılığıyla incelendi. Çalışma beş farklı enlem bölgesi için IGS-GPS ağına bağlı on istasyondan elde edilen TEC değerleri ile gerçekleştirilmiştir. Sonuç olarak, fırtına sırasında gece yarısı güney yarımkürenin yüksek enlem bölgesinde meydana gelen rahatsızlıkların kuzey yarımkürenin yüksek enlem bölgesinden daha büyük olduğu gözlenmiştir. Ayrıca, tedirgin günlerdeki ROTI değerlerinin (07-08 Eylül 2017) diğer günlerden daha yüksek olduğu belirlendi.

Investigation of the Severe Geomagnetic Storm Effects on Ionosphere at Nighttime through ROTI

In this study, the effect of the intense geomagnetic storm on the Earth's ionosphere during the period 07-08 September 2017 with the early arrival of coronal mass discharges associated with X-9 flares on the 6 September 2017 was investigated through ROTI, an index of Total Electron Content (TEC) ratio (ROT). The study was conducted with TEC values obtained from ten stations connected to the IGS-GPS network for five different latitude regions. As a result, it was observed that during the storm, the disturbances that occurred in the high latitude region of the southern hemisphere were more disturbed than the high latitude region of the northern hemisphere at nighttime. In addition, ROTI values were found to be higher than other days on disturbed days (07-08 September 2017).
Keywords:

Ionospheric TEC, ROTI,

___

  • [1] Astafyeva E., Yasyukevich Y., Maksikov A., Zhivetiev I. Geomagnetic storms, super‐storms, and their impacts on GPS‐based navigation systems, Space Weather. 12, 508-525, 2014.
  • [2] Danilov A., Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere, International Journal of Geomagnetism and Aeronomy. 2, 209-224, 2001.
  • [3] Skone S., Cannon, M. E. Ionospheric effects on differential GPS applications during auroral substorm activity, ISPRS Journal of Photogrammetry and Remote Sensing . 54, 1995.
  • [4] Noja M., Stolle C., Park J., Lühr H. Long‐term analysis of ionospheric polar patches based on CHAMP TEC data, Radio Science. 48, 289-301, 2013.
  • [5] Prikryl P., Ghoddousi-Fard R., Kunduri B.S. R., Thomas E. G., Coster A. J., Jayachandran, P. T., Spanswick E., Danskin, D. W. GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm, Annales Geophysicae. 31, 805-816, 2013.
  • [6] Prikryl P., Jayachandran P.T., Mushini S.C., Richardson I. G. High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: a superposed epoch analysis, Earth, Planets and Space. 66, 62, 2014.
  • [7] Cherniak I. Zakharenkova, I. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm, Earth, Planets and Space. 67, 151, 2015.
  • [8] Fejer B.G., Scherliess L., Paula E.D. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, Journal of Geophysical Research: Space Physics. 104, 19859-19869, 1999.
  • [9] Rezende L.F.C.D., Paula E.R.D., Batista I.S., Kantor, I.J., Muella M.T.D.A.H. Study of ionospheric irregularities during intense magnetic storms, Revista Brasileira de Geofísica. 25, 151-158, 2007.
  • [10] Cherniak I., Zakharenkova, I. High-latitude ionospheric irregularities: differences between ground-and space-based GPS measurements during the 2015 St. Patrick’s Day storm, Earth, Planets and Space. 68, 136, 2016.
  • [11] Oladipo O.A., Schüler T. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector, Annals of Geophysics. 56, 0565, 2014.
  • [12] Arikan F., Nayir H., Sezen U., Arikan O. Estimation of single station interfrequency receiver bias using GPS‐TEC, Radio Science. 43, RS4004, 2008.
  • [13] Nayir H., Arikan F., Arikan O., Erol, C. Total electron content estimation with Reg‐Est, Journal of Geophysical Research: Space Physics. 112, A11313, 2007.
  • [14] Sezen U., Arikan F., Arikan O., Ugurlu O., Sadeghimorad A. Online, automatic, near‐real time estimation of GPS‐TEC: IONOLAB‐TEC, Space Weather. 11, 297-305, 2013.
  • [15] Jacobsen, K. S. The impact of different sampling rates and calculation time intervals on ROTI values, Journal of Space Weather and Space Climate. 4, A33, 2014.
  • [16] Pi X., Mannucci A. J., Lindqwister U. J., Ho C. M. Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophysical Research Letter. 24, 2283-2286, 1997.
  • [17] Liu X., Yuan Y., Tan B., Li M. Observational analysis of variation characteristics of GPS-based TEC fluctuation over China, ISPRS International Journal of Geo-Information.5, 237, 2016.
  • [18] Oladipo O.A., Schüler T. Equatorial ionospheric irregularities using GPS TEC derived index, Journal of Atmospheric and Solar-Terrestrial Physics. 92, 78-82, 2013.
  • [19] Wautelet, G.: Characterization of ionospheric irregularities and their influence on high-accuracy positioning with GPS over mid-latitudes, Ph.D. Thesis, Université de Liège, Liège, Belgique, 2013.
Muş Alparslan Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 2147-7930
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: Muş Alparslan Üniversitesi