Rayleigh Sönümlemeli Kanalda NOMA Üstünlük Koşulunun Belirlenmesi

Dikgen olmayan çoklu erişim (NOMA) birden fazla kullanıcının aynı frekans bandını aynı anda kullanması ilkesine dayanan yeni nesil çoklu erişim tekniğidir. NOMA uygulamasında alıcı üzerindeki Ardışık Girişim İptali (SIC) mekanizması nedeniyle aynı frekansı kullanacak kullanıcı çiftlerinin seçimi NOMA üstünlük durumu için belirleyici bir faktördür. Ancak NOMA'nın performansı, bir NOMA kümesindeki kullanıcının sırasına dayanan SIC mekanizmasına bağlıdır. Literatürde, kullanıcı eşleştirmesi için kullanıcıların mesafe tabanlı sıralamasının kullanılmasının rastgele eşleştirmeden daha iyi performans gösterdiği ve yol kaybı tabanlı bir kanal modeli varsayımıyla NOMA üstünlük koşulu için analitik bir sınır mesafesinin türetildiği gösterilmiştir. Bu çalışmada, NOMA’nın dikgen çoklu erişime (OMA) göre üstünlük koşulu hücresel yukarı yönlü bağlantıdaki Rayleigh kanal modeli için spektrum verimliliği açısından incelenmiş ve yol kaybı temelli kanal modeliyle karşılaştırılmıştır. Bu çalışmada, Dikey Çoklu Erişim'e (OMA) göre yol kaybına dayalı NOMA üstünlük koşulu, bir hücresel yukarı bağlantıda Rayleigh kanal modeli için spektral verimlilikler açısından araştırılmış ve sonuçlar, literatürdeki yol kaybı tabanlı kanal modeli için türetilen bir analitik sınır değeri ile karşılaştırılmıştır. Ayrıca, kullanıcıların güç oranının NOMA üstünlük koşuluna etkisi araştırılmış ve türetilen analitik modelin doğruluğu, her iki kanal modeli için sayısal sonuçlarla doğrulanmıştır. Sonuçlar, mesafe değişikliklerine dayalı NOMA üstünlük koşulunun varsayılan kanal modeline bağlı olduğunu, ancak kanalı Rayleigh sönümleme veya yol kaybı tabanlı kanal olarak kabul etmenin önemli bir fark yaratmadığını ortaya koymaktadır. Ayrıca, her iki kanal modeli için de elde edilen NOMA üstünlük koşulunun doğruluğunun güç oranları ile değiştiği ve Rayleigh kanalında sayısal ve analitik sonuçlar arasındaki farkın yol kaybı tabanlı kanal modeline göre daha büyük olduğu görülmüştür.

NOMA Superiority Condition for Rayleigh Fading Channels

Non-orthogonal Multiple Access (NOMA) is a new generation multiple access technique in which multiple users simultaneously share the same frequency band. In the implementation of NOMA, the choice of user pairs that will use the same frequency is a determining factor for the NOMA superiority condition due to Successive Interference Cancellation (SIC) mechanism on the receiver. However, performance of NOMA depends on SIC mechanism which relies on the order of the user in a NOMA cluster. In the literature, it has been shown that utilizing distance based order of the users for user pairing outperforms over the random pairing and an analytical boundary distance is derived for NOMA superiority condition for a path loss based channel model. In this study, the path loss based NOMA superiority condition respect to the Orthogonal Multiple Access (OMA) was investigated in terms of the spectral efficiencies for Rayleigh channel model in a cellular uplink and the results were compared with an analytical boundary value derived for a path loss based channel model in the literature. In addition, the effect of power ratio of the users on the NOMA superiority condition is investigated and accuracy of the derived analytical model is validated with numerical results for both channel models. The results reveal that the NOMA superiority condition based on distance changes depend on the assumed channel model, but assuming the channel as Rayleigh fading or path loss based channel does not make a significant difference. In addition, it is observed that the accuracy of the derived NOMA superiority condition changes with the power ratios for both channel models and the gap between numerical and analytical results is larger in Rayleigh channel compared to path loss based channel model.

___

  • Andrews J.G., Buzzi S., Choi W., Hanly S.V., Lozano A., Soong A.C.K., Zhang J.C. What will 5G be?, IEEE Journal on Selected Areas in Communications. 32:6 1065-1082, 2014.
  • Benjebbour A., Saito Y., Kishiyama Y., Li A., Nakamura T. Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access, International Symposium on Intelligent Signal Processing and Communication Systems. 770-774, 2013.
  • Hasna M.O., Alouni M.S, Bastami A., Ebbini E.S. Performance analysis of cellular mobile systems with successive co-channel interference cancellation, IEEE Transactions on Wireless Communications, 2:1 29-40, 2003.
  • Islam S.M.R., Avazov N., Dobre O.A., Kwak K. Power-domain non-orthogonal multiple access (noma) in 5g systems: Potentials and challenges, IEEE Communications Surveys Tutorials. 19:2, 721-742. 2017.
  • Körpe E., Kartal B. Effect of different channel models on noma superiority condition, 3rd International Balkan Conference on Communications and Networking. 1-5, 2019.
  • Saito Y., Kishiyama Y., Benjebbour A., Nakamura T., Li A., Higuchi K. Non-orthogonal multiple access (noma) for cellular future radio access, 77th IEEE Vehicular Technology Conference. 1-5, 2013.
  • Prasad R. OFDM for Wireless Communications Systems, Artech, 2004.
  • Tabassum H., Ali M.S., Hossain E., Hossain M.J., Kim D.I. Uplink Vs. Downlink NOMA in Cellular Networks: Challenges and Research Directions, IEEE 85th Vehicular Technology Conference (VTC Spring), p. 1-7, 2017.
  • Timotheou S., Krikidis I. Fairness for non-orthogonal multiple access in 5G systems, IEEE Signal Processing Letters. 22:10 1647-1651, 2015.
  • Mahady I. A., Bedeer E., Ikki S., Yanikomeroglu H. Sum-Rate Maximization of NOMA Systems under Imperfect Successive Interference Cancellation, IEEE Commun. Lett. 23 474-477, 2019.
  • Chen Z., Ding, Z., Dai X., Zhang R. An Optimization Perspective of the Superiority of NOMA Compared to Conventional OMA, in IEEE Transactions on Signal Processing, 65:19 5191-5202, 2017.
  • Shi Z., Ma S., ElSawy H., Yang G., Alouini M. Cooperative HARQ-Assisted NOMA Scheme in Large-Scale D2D Networks, in IEEE Transactions on Communications, 66:9 4286-4302, 2018.
  • Sharma P., Kumar A., Bansal M. Performance analysis of downlink NOMA over η–µ and κ–µ fading channels. IET Communications, 4 522-531, 2020.
  • Wei Z.L., Yang D.W.K., Yuan Ng,J., Hanzo L. On the Performance Gain of NOMA Over OMA in Uplink Communication Systems, in IEEE Transactions on Communications, 68:1 536-568, 2020.
  • Mankar P.D., Dhillon H.S. Downlink Analysis of NOMA-Enabled Cellular Networks With 3GPP-Inspired User Ranking," in IEEE Transactions on Wireless Communications, 19:6 3796-3811, 2020.
  • Tabassum H., Hossain E., Hossain J. Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes, IEEE Transactions on Communications. 65:8 3555-3570, 2017.
  • Shi Z., Ma S., ElSawy H., Yang G., Alouini M. Cooperative HARQ-Assisted NOMA Scheme in Large-Scale D2D Networks, in IEEE Transactions on Communications, 66:9 4286-4302, 2018.
  • Salehi M., Tabassum H., Hossain E. Accuracy of Distance-Based Ranking of Users in the Analysis of NOMA Systems, in IEEE Transactions on Communications, 67:7 5069-5083, 2019.