Farklı altlık sıcaklıklarında sprey piroliz yöntemiyle üretilen SnO2:Sb:F ince filmlerin yapısal ve morfolojik özellikleri

Düşük çözelti konsantrasyonlu ve düşük Sb dopingli çifte (antimon ve flüor) katkılı kalay oksit (SnO2:Sb:F/AFTO) ince filmler, farklı altlık sıcaklıklarında sprey piroliz tekniği kullanılarak cam altlık üzerinde biriktirildi. Altlık sıcaklığının hazırlanan filmlerin özellikleri üzerindeki etkisi araştırılmıştır. X-ışını difraksiyon analizinde, ince filmlerin, tüm substrat sıcaklığı için (101), (200) ve (210) yönleri boyunca yönelimli ve polikristal tetragonal bir yapı olduğu görülmüştür. SEM ve AFM görüntüleri, ince filmlerin altlık sıcaklığından etkilendiğini, film yüzeylerinin homojen olduğunu ve nanokristallerden yapıldığını gösterdi. Filmler % 83 ortalama geçirgenlik değerlerine sahiptir ve Eg değerleri 3.10-3.89 eV arasındadır. Bu Eg ve geçirgenlik değerleri altlık sıcaklıkları ile sürekli değişmiştir. Bu yüzden ince film özelliklerinin substrat sıcaklığından etkilendiği ve bu sonuçların çoğunlukla literatürden elde edilen sonuçlarla uyumlu olduğu sonucuna varıldı.

Structural and morphological properties of SnO2:Sb:F thin films produced by spray pyrolysis technique at various substrate temperatures

Doubly (antimony and fluorine) doped tin oxide (SnO2:Sb:F/AFTO) thin films with low solution concentration and low Sb doping were deposited on the glass by using spray pyrolysis technique at different substrate temperatures. The effect of substrate temperature on properties of the prepared films was investigated. It was seen from X-ray diffraction analysis that the thin films are rutile structure with polycrystalline and orientations along (101), (200) and (210) directions for all substrate temperature. SEM and AFM images indicated that thin films were affected by substrate temperature and the surface of films was homogeneous and to be made of nanocrystalline. The films have 83% average transmittance values and Eg values are between 3.10-3.89 eV. These Eg and transmittance values changed continuously with substrate temperatures. Hence, it was concluded that properties of thin films were affected by the substrate temperature and these result mostly compatible with the results obtained from literature.

___

  • [1] Zhao G., Zhi X., Ren Y., Zhu T. Preparation of Sb:F:SnO2 Films and their Application in Low-E glass. Materials Science Forum. 620-622 5-8, 2009.
  • [2] Song J.E., Kang Y.S. Synthesis of Indium Tin Oxide Nanoparticles and application to near IR-reflective film. Mater. Res. Soc. Symp. Proc. 818 1–14, 2004.
  • [3] a)Velasquez C., Ojeda M.L., Campero A. Surfactantless synthesis and textural properties of sel-assembled mesoporous SnO2. Nanotechnology. 17 3347–3358, 2006. b)Ibrahim-Ouali M., Dumur F. Recent Advances on Metal-Based Near-Infrared and Infrared Emitting OLEDs. Molecules. 24 1412-1451, 2019.
  • [4] Ouerfelli J., Djobob S.O., Bernede J.C., Cattinb L., Morsli M., Berredjem Y. Organic light emitting diodes using fluorine doped tin oxide thin films, deposited by chemical spray pyrolysis, as anode. Materials Chemistry and Physics. 112 198-201, 2008.
  • [5] a)Arias A.C., R. de Lima J., Hümmelgen I. A., Tin Oxide as a Cathode in Organic Light‐Emitting Diodes. Adv. Mater. 10 392-394, 1998. b)Hegazy, A.R., Salameh B., Alsmadi A.M. Optical Transitions and photoluminescence of fluorine-doped zinc tin oxide thin films prepared by ultrasonic spray pyrolysis. Ceramics International. 45 19473-19480, 2019. c) Asl H.Z., Rozati S.M. High-quality spray-deposited fluorine-doped tin oxide: effect of film thickness on structural, morphological, electrical, and optical properties. Applied Physics A-Materials Science & Processing. 125 689, 2019. d) Erken O, Ozkendir O.M., Gunes M., Harputlu E, Ulutas C., Gumus C. A study of the electronic and physical properties of SnO2 thin films as a function of substrate temperature. Ceramics International. 45 15 19086-19092, 2019.
  • [6] Brown J.R., Haycock P.W., Smith L.M., Jones A.C., Williams E.W. Response behaviour of tin oxide thin film gas sensors grown by MOCVD. Sens. Act. B. 63 109-114, 2000.
  • [7] Yuwono A.H., Arini T., Lalasari L.H., Sofyan N., Ramahdita G., Nararya A., Firdiyono F., Andriyah L., Subhan A., The effect of various precursors and solvents on the characteristics of fluorine-doped tin oxide conducting glass fabricated by ultrasonic spray pyrolysis. International Journal of Technology. 7 1336-1344, 2017.
  • [8] Mokaripoor E., Bagheri-Mohagheghi M.M. Effect of very low to high Sb-doping on the structural, electrical, photo-conductive and thermoelectric properties of fluorine-doped SnO2 (FTO) thin films prepared by spray pyrolysis technique Mater Sci: Mater Electron 27 2305–2314, 2016.
  • [9] Ohgaki T., Matsuokaa R., Watanabe K., Matsumoto K., Adachi Y., Sakaguchi I., Hishita S., Ohashi N., Haneda H., Synthesizing SnO(2) thin films and characterizing sensing performances. Sens. Actuators B. 150 99-104, 2010.
  • [10] Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin solid film. 402 71-78, 2002.
  • [11] Battal A., Tatar D., Kocyigit A., Duzgun B. Effect of substrate temperature on some properties doubly doped tin oxide thin films deposited by using spray pyrolysis. Material Focus. 4 445–456, 2015.
  • [12] Sinha S.K., Bhattacharya R., Ray S.K., Manna I. Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Material Letters. 65 146-149, 2011.
  • [13] Chung W.Y., Shim C.H., Choi S.D., Lee D.D., Tin oxide microsensor for LPG monitoring. Sens. Act, 20 139-143, 1994.
  • [14] Hong C-S, Park H-H, Moon J., Park H-H. Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films. Thin Solid Films. 515 957-960, 2006.
  • [15] Ravichandran K., Mohan R., Jabena Begum N., Snega S., Swaminathan K., Ravidhas C., Sakthivel B., Varadharajaperumal S. Impact of spray flux density and vacuum annealing on the transparent conducting properties of doubly doped (Sn plus F) zinc oxide films deposited using a simplified spray technique. Vacuum.107 68-76, 2014.
  • [16] Karanjai M.K., Gupta D.D. A simple and novel technique for the deposition of conducting tin dioxide films. J. Phys. D: Appl. Phys. 21 356-358, 1998.
  • [17] Chinnappa L., Ravichandran K., Sakthivel B., Investigation on doubly doped (fluorine+antimony) tin oxide films deposited by a simplified spray pyrolysis Technique. Pro Indian Natn. Science Academic 79 409-415, 2013.
  • [18] Ravichandran K., Muruganantham G., Sakthivel B., Philominathan P., Nanocrystalline doubly doped tin oxide films deposited using a simplified and low-cost spray technique for solar cell applications. Journal of Ovonic Research. 5 63-69, 2009.
  • [19] Moholkar A.V., Pawara S.M., Rajpureb K.Y., Almaric S.N., Patil P.S., Bhosale C.H., Solvent-dependent growth of sprayed FTO thin films with mat-like morphology. Solar Energy Mater. Solar Cells. 92 1439-1444, 2008.
  • [20] Moholkar A.V., Pawara S.M., Rajpureb K.Y., Bhosale C.H., Effect of solvent ratio on the properties of highly oriented sprayed fluorine-doped tin oxide thin films. Mater. Lett. 61 3030-3036, 2007.
  • [21] Shinde S.S., Shinde P.S., Pawar S.M., Mohalkar A.V., Bhosale C.H., Rajpure K.Y. Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Science. 10 1209-1214, 2008.
  • [22] Shanthi S., Subramanian C., Ramasamy P. Investigations on the Optical Properties of Undoped, Fluorine Doped and Antimony Doped Tin Oxide Films. Cryst. Res. Technol., 34 1037-1046, 1999.
  • [23] Shen C.M., Zhang X.G., Li H.L. Influence of different deposition potentials on morphology and structure of CdSe films. Appl. Surf. Sci. 240 34-41, 2005.
  • [24] Prabahar S., Dhanam M. CdS thin films from two different chemical baths - structural and optical analysis. J. Cryst. Growth.285 41-48, 2005.
  • [25] Pankove J.I., Optical Processes in Semiconductors, Prentice-Hall Press, New Jersey, 1971.
  • [26] Manifacier J.C., De Murcia M., Fillard J.P. Optical and electrical-properties of SnO2 thin-films in relation to their stoichiometric deviation and their crystalline-structure. Thin Solid Films. 41 127-135, 1977.
  • [27] Elangovan E., Ramamurthi K. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Appl. Surf. Sci. 249 183-196, 2005.
  • [28] Senthilkumar V., Vickraman P., Prince J.J., Jayachandran M., Sanjeeviraja C. Effects of annealing temperature on structural, optical, and electrical properties of antimony-doped tin oxide thin films. Phil. M. Letters 90 337-347, 2010.
  • [29] Gu F., Wang S.F., Lu M.K., Cheng X.F., Liu S.W., Zhou G.J., Xu D., Yuan D.R. Luminescence of SnO2 thin films prepared by spin-coating method. Journal Crystal Growth, 262 182-185, 2004.
  • [30] Frohlich D., Klenkies R., Helbig R. Band-gap assignment in SnO2 by 2-photon spectroscopy phys. Rev. Lett. 41 1750-1751, 1978.
  • [31] Park S.S., Zheng H., Mackenzie J.D., Sol-gel derived antimony-doped tin oxide coatings on ceramic cloths. Mat. Letters, 22 175-180, 1995.
  • [32] Gaewdang T., Wongcharoen N. Growth and characterization of Co-doped fluorine and antimony in tin oxide thin films obtained by ultrasonic spray pyrolysis. Journal of Solid Mechanics and Materials Engineering, 1 592-601, 2007.
  • [33] Kojima M., Kato H., Gatto M. Blackening of tin oxide thin films heavily doped with antimony. Phil. Mag. B. 68 215-222, 1993.
  • [34] Chambers S.A., Droubay T.C., Wang C.M., Rosso K.M., Heald, S.M., Schwartz D.A., Kittilstved, K.R., Gamelin D.R. Ferromagnetism in oxide semiconductors. Mater. Today . 9 28–35, 2006.
  • [35] Chinnappa L., Ravichandran K., Saravanakumar K., Muruganantham G., Sakthivel B. The combined effects of molar concentration of the precursor solution and fluorine doping on the structural and electrical properties of tin oxide films. Journal Material Science Material Electron. 22 1827-1834, 2011.
  • [36] Zhang B., Tian Y., Zhang J.X., Cai W. The FTIR studies on the structural and electrical properties of SnO2:F films as a function of hydrofluoric acid concentration Optoelectronics and advanced materials-rapid communications. 4 1158-1162, 2010.
  • [37] Gupta S., Yadav B.C., Dwivedi P.K. Das B. Microstructural, optical and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis. Materials Research Bulletin. 48 3315-3322, 2013.
  • [38] Ravichandran K., Thirumurugan K., Begum N.J., Snega S. Investigation of p-type SnO2:Zn films deposited using a simplified spray pyrolysis technique. Superlattices and Microstructures.60 327-335, 2013.
  • [39] Kawazoe H., Yanagi H., Ueda K., Hosono H. Transparent p-type conducting oxides: Design and fabrication of p-n heterojunctions. MRS Bulletin. 25 28-36, 2000.
  • [40] Benouis C.E., Benhaliliba M., Mouffak Z., Avila-Garcia A., Tiburcio-Silver A., Ortega Lopez M., Romano Trujillo R., Ocak Y.S. The low resistive and transparent Al-doped SnO2 films: p-type conductivity, nanostructures and photoluminescence. Journal of Alloys and Compounds. 603 213–223, 2014.
  • [41] Shanthi S., Anuratha H., Subramanian C., Ramasamy R. Effect of fluorine doping on structural, electrical and optical properties of sprayed SnO2 thin films. Journal of Crystal Growth.194 369-373, 1998.[42] Ellmer K. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. Rev. D. 34 3097-3108, 2001.
  • [43] Pan S.S., Tian Y.H., Luo Y.Y., Zhang Y.X., Wang S., Li G.H. Surface localized exciton emission from undoped SnO2 nanocrystal films. Appl. Phys. Lett. 97 221105, 2010.
  • [44] Shinde S.S., Shinde P.S., Sathe V.G., Barman S.R., Bhosale C.H., Rajpure K.Y. Electron-phonon interaction and size effect study in catalyst based zinc oxide thin films Journal Mol Struc. 984 186-193, 2010.
  • [45] Babar A.R., Shinde S.S., Moholkar A.V., Bhosale C.H., Kim J.H., Rajpure K.Y. Sensing properties of sprayed antimony doped tin oxide thin films: Solution molarityJournal Alloys Compd. 509 3108-3115, 2011.
  • [46] Kim T.W., Lee D.U., Yoon Y.S. Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices Journal Applied Physics. 88 3759-3761, 2000.
  • [47] Gnanam S., Rajendran V. Preparation of Cd-doped SnO2 nanoparticles by sol-gel route and their optical properties. J Sol-Gel Sci Technol. 56 128–133, 2010.
  • [48] Cheng B., Russell J.M., Shi W.S., Zhang L., Samulski ET. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soci. 126 5972-5973, 2004.
  • [49] Rani S., Roy S.C., Karar N., Karar N., Bhatnagar M.C. Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films. Solid State Commun 141 214-218, 2007.
  • [50] Jeong, J. Choi S-P., Chang C. I., Shin D.J., Park J.S., Lee B-T., Park Y-J., Song H-J. Photoluminescence properties of SnO2 thin films grown by thermal CVD Solid State Communications.127 595–597, 2003.
  • [51] Huang J.L., Pan Y., Chang J.Y., Yau B.S. Annealing effects on properties of antimony tin oxide thin films deposited by RF reactive magnetron sputtering. Surf. Coat. Tech. 184 188-193, 2004.
  • [52] Babar A.R., Rajpure K.Y. Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films. Journal of Analytical and Applied Pyrolysis 112 214–220, 2015.
  • [53] Tripathiand A., Shukla R. K. Structural, optical and photoluminescence study of nanocrystalline SnO2 thin films deposited by spray pyrolysis. Bull. Mater. Sci., 37 417–423, 2014.