Doğal polimer destekli bir titanyum nanokompozit elektrodun lizin amino aside karşı elektrokimyasal duyarlılığı, seçiciliği ve duyusal özellikleri

Bu çalışmada kitosan (Chit) destekli titanyum (Ti) nanoparçacıkları (Ti@Chit NPs) kimyasal yöntemle sentezlendi. Ti@Chit NP'leri taramalı elektron mikroskobu (SEM) ve atomik kuvvet mikroskobu (AFM) sonuçlarına göre sırasıyla 7,275 ± 2,15 nm ve 18,629 nm olarak hesaplanmıştır. Sentezlenen NP'ler elektroda modifiye edildi ve lizin amino aside karşı bir duyarlılık çalışması yapıldı. Ti@Chit elektrodunun amino asit lizine karşı katalitik bir performansa sahip olduğu belirlenmiştir. Tespit sınırı (LOD) değerinin ortalama 0,0041 µM olduğu tahmin edilmektedir.
Anahtar Kelimeler:

Lizin, Ti@Chit NPs, Sensör

Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid

In this study, chitosan (Chit) supported titanium (Ti) nanoparticles (Ti@Chit NPs) were synthesized by chemical method. Ti@Chit NPs were calculated to be 7.275 ± 2.15 nm and 18.629 nm according to scanning electron microscopy (SEM) and atomic force microscopy (AFM) results, respectively. The synthesized NPs were modified to the electrode and a sensitivity study was carried out against lysine amino acid. It has been determined that the Ti@Chit electrode has a catalytic performance against the amino acid lysine. The limit of detection (LOD) value is estimated to average 0.0041 µM.

___

  • [1] Ajandouz E.H., Puigserver A. Nonenzymatic Browning Reaction of Essential Amino Acids:  Effect of pH on Caramelization and Maillard Reaction Kinetics, J. Agric. Food Chem. 47:5 1786–1793, 1999.
  • [2] Hawkins C.L., Davies M.J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation, Biochem. J., 332:3 617–625, 1998.
  • [3] Kraus L.M., Kraus J. Carbamoylation of amino acids and proteins in uremia, Kidney Int., 59:78 S102–S107, 2001.
  • [4] Casettari L., Vllasaliu D. Lam J.K.W. Soliman M., Illum L. Biomedical applications of amino acid-modified chitosans: A review, Biomaterials, 33:30 7565–7583, 2012.
  • [5] Obst M., Steinbüchel A. Microbial Degradation of Poly(amino acid)s, Biomacromolecules, 5:4 1166–1176, 2004.
  • [6] Friedman M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences, J. Agric. Food Chem. 52:3 385–406, 2004.
  • [7] Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine., 16:1 7–21, 2013.
  • [8] Hayamizu K. Oshima I. Nakano M. Comprehensive Safety Assessment of l-Lysine Supplementation from Clinical Studies: A Systematic Review, J. Nutr., 150 2561S-2569S, Oct. 2020.
  • [9] Vaghefi S.B., Makdani D.D., Mickelsen O. Lysine supplementation of wheat proteins A review, Am. J. Clin. Nutr. 27:11 1231–1246, 1974.
  • [10] Gholivand M.B., Shamsipur M., Amini N. Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes, Electrochim. Acta, 123 569–575, 2014.
  • [11] Sahin O.G., Gulce H., Gulce A. Polyvinylferrocenium based platinum electrodeposited amperometric biosensors for lysine detection, J. Electroanal. Chem. 690 1–7, 2013.
  • [12] Paolesse R., Nardis S., Monti, Stefanelli D.M., Natale Di C. Porphyrinoids for Chemical Sensor Applications, Chemical Reviews, 22 2517–2583, 2017.
  • [13] Hulanicki A. Glab S. Ingman F. Chemical sensors definitions and classification, Pure Appl. Chem. 63:9 1247–1250, 1991.
  • [14] Chande S., Bergwitz C. Role of phosphate sensing in bone and mineral metabolism, Nat. Rev. Endocrinol. 14:11 637–655, 2018.
  • [15] Kocak N., Sahin M., Kücükkolbasi S., Erdogan Z.O. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor, Int. J. Biol. Macromol. 51:5 1159–1166, 2012.
  • [16] Raziq A., Kidakova A ., Boroznjak R., Reut J., Öpik A., Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen, Biosens. Bioelectron. 78 113029, 2021.
  • [17] Hocini A., Ben salah H., Khedrouche D., Melouki N. A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure, Opt. Quantum Electron. 52:7 1–10, 2020.
  • [18] Li Q., Li Z., Zhang Q., Zheng L., Yan W., Liang X., Gu L., Chen C., Wang D., Peng Q., Li Y. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution, Nano Res. 14: 5 1435–1442, 2021.
  • [19] Kimuam K., Rodthongkum N., Ngamrojanavanich N., Chailapakul O., Ruecha N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor, Microchem. J., 155 104744, 2020.
  • [20] Agarwal H ., Nakara A., Shanmugam V. K., “Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review,” Biomedicine and Pharmacotherapy, 109. SAS, 2561–2572, 2019.
  • [21] Fan D., Zhai Q., Zhou W., Zhu X., Wang E., Dong S. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation,” Biosens. Bioelectron. 85 771–776, 2016.
  • [22] Han D., Zhao M., Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level, J. Alloys Compd., 815 152406, 2020.
  • [23] Rahmati N., Rahimnejad M., Pourali S.M., Muallah S.K. Bismuth Oxychloride Nanoparticles: Deep Eutectic Solvent Assisted Synthesis and Application in an Electrochemical Nickel Sensor, ChemistrySelect, 7:46 e202202430, 2022.
  • [24] Paul J., Philip J. Inter-digital capacitive ethanol sensor coated with cobalt ferrite nano composite as gas sensing material, Mater. Today Proc. 25 148–150, 2020.
  • [25] Alam A.U., Deen M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes, Anal. Chem. 92:7 5532–5539, 2020.
  • [26] Zhang Z., Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Convers. Manag., 47:3 303–310, 2006.
  • [27] Shukla,S.K., Mishra A.K., Arotiba O.A., Mamba B. B. Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol. 59 46–58, 2013.
  • [28] Cheng M., Gong K., Li J., GongY ., Zhao N., Zhang X. Surface Modification and Characterization of Chitosan Film Blended with Poly-L-Lysine, 19:1 59–75, 2004.
  • [29] Abhilash M., Thomas D. Biopolymers for Biocomposites and Chemical Sensor Applications, in Biopolymer Composites in Electronics, Elsevier Inc., pp. 405–435, 2017.
  • [30] Rinaudo M. Chitin and chitosan: Properties and applications,” Progress in Polymer Science (Oxford), 31:7 603–632, 2006.
  • [31] Yilmaz M.D. Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics, Carbohydr. Polym. 146 174–180, 2016.
  • [32] Adlim M., Abu Bakar M., Liew K.Y., Ismail J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity, J. Mol. Catal. A Chem. 212:1–2 141–149, 2004.
  • [33] Yu X., Jing Y., Xia W. Antifungal properties of chitosan-cobalt(II) complex and its potential on the suppression of damping-off in cucumber seedlings, Asia-Pacific J. Chem. Eng. 11:5 714–720, 2016.
  • [34] Abdelkader H., Fathalla Z. Investigation into the Emerging Role of the Basic Amino Acid L-Lysine in Enhancing Solubility and Permeability of BCS Class II and BCS Class IV Drugs, Pharm. Res. 35:8 1–18, 2018.
  • [35] Cetin A. Korkmaz A. Erdoğan E. Kösemen A. A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films, Mater. Chem. Phys. 222 37–44, 2019.
  • [36] Cetin A. Korkmaz A. Synthesis, optical and morphological properties of novel pyrazole-based oligoamide film, Opt. Mater. 85 79–85, 2018.
  • [37] Korkmaz A., Cetin A., Kaya E., Erdoğan E .Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology, J. Polym. Res. 25:8 1–8, 2018.
  • [38] Wokovich A., Tyner K., Doub W., Sadrieh N., Buhse L.F. Particle size determination of sunscreens formulated with various forms of titanium dioxide, 35:10 1180–1189, 2009.
  • [39] Asl S.D., Sadrnezhaad S.K. Growth of TiO2 Branched Nanorod Arrays on Transparent Conducting Substrate, 17, 2023.
  • [40] Wang J., Zhang S., Zhang, Y. Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode, Anal. Biochem. 396:2 304–309, 2010.
  • [41] Zhang D., Chen X., Ma W., Yang T. Direct electrochemistry of glucose oxidase based on one step electrodeposition of reduced graphene oxide incorporating polymerized l-lysine and its application in glucose sensing, Mater. Sci. Eng. C, 104 109880, 2019