2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu

Bu çalışmada, 2-(2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid (SL) molekülünün geometrik yapısı taban durumunda Gaussian 09W programı kullanılarak optimize edilmiştir. Optimize edilen moleküler yapının sonuçları sunuldu. X-ışını kırınımı sonuçları ile mukayese edildi. SL molekülünün teorik harmonik titreşimsel dalga boyları hesaplandı ve deneysel değerlerle karşılaştırıldı. Deneysel değerler ve hesaplanan değerler birbiri ile uyum içerisinde bulunmuştur. SL molekülü, optiksel geçişler için UV-görünür spektral çalışmalar ile karakterize edilmiştir. Ayrıca, 1H ve 13C NMR kimyasal kayma değerleri, doğrusal olmayan optik analizi, sınır moleküler yörünge enerjileri, moleküler yüzeyler, Mulliken yükü ve atomik polar tensör bazlı yükler incelenmiştir. Tüm teorik hesaplamalar LanL2DZ temel seti ile B3LYP ve HSEH1PBE yoğunluk fonksiyonel teorisi (DFT) yöntemi kullanılarak hesaplanmıştır.
Anahtar Kelimeler:

B3LYP, HSEH1PBE, NMR

Quantum chemical characterization of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-N-methylhydrazine-1-carbothioamide molecule

In this study, the geometric structure of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-N-methylhydrazine-1-carbothioamide (SL) molecule was optimized using Gaussian 09W software in the ground state. The results of the optimized molecular structure were presented. It was compared to the X-ray diffraction data. The theoretical harmonic vibrational wavenumbers of SL molecule were calculated and its values were compared with experimental values. The experimentally and the calculated values were found to be in good agreement. SL molecule was characterized by UV-visible spectral studies for the optical transmission. Also, 1H and 13C NMR chemical shifts values, nonlinear optical analysis, the frontier molecular orbital energies, molecular surfaces, Mulliken charges and atomic polar tensor based charges were investigated. All theoretical calculations were calculated by using LanL2DZ basis set B3LYP and HSEH1PBE density functional theory method.
Keywords:

B3LYP, HSEH1PBE, NMR,

___

  • [1] Arafath Md. A., Adam F., Razali M. R., Hassan L. E. A., Ahamed M. B. K., Majid A. M. S. A. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde, Journal of Molecular Structure 1130, 791-798, 2017.
  • [2] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.,. Montgomery, J.A, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. Ve Fox D.J., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford Ct., 2009.
  • [3] Lee, C., Yang, W. Parr R.G. Development Of The Colle-Salvetti Correlation-Energy Formula İnto A Functional Of The Electron Density. Phys. Rev. B, 37, 785, 1988.
  • [4] Becke, A. D. Density‐Functional Thermochemistry. Iıı. The Role Of Exact Exchange. J. Chem. Phys., 98, 5648, 1993.
  • [5] Heyd, J. Scuseria G. Efficient Hybrid Density Functional Calculations İn Solids: Assessment Of The Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional. J. Chem. Phys., 121, 1187, 2004.
  • [6] Heyd J. And Scuseria G.E. Assessment And Validation of A Screened Coulomb Hybrid Density Functional. J. Chem. Phys., 120, 7274, 2004.
  • [7] Heyd J., Peralta J. E., Scuseria G. E., And Martin R. L. Energy Band Gaps And Lattice Parameters Evaluated With The Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys., 123, 174101, 2005.
  • [8] Heyd J., Scuseria G. E., Ernzerhof M. Hybrid Functionals Based On A Screened Coulomb Potential. J. Chem. Phys., 124, 219906, 2006.
  • [9] P.J. Hay, W.R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82, 270-283, 1985.
  • [10] Wadt W.R., Hay P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 284-298, 1985.
  • [11] Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 299-310, 1985.
  • [12] Pir H., Günay N., Avcı D. Quantum chemical computational studies on bisthiourea zinc chloride, Indian J. Phys., 86, 1049, 2012.
  • [13] Kariper S. E. Alkin Birimli Piridil Ligantları İçeren Bazı Dinükleer Metal Karbonillerin Kuantum Kimyasal Hesaplama Yöntemleriyle Yapısal, Spektroskopik Ve Optik Özelliklerinin İncelenmesi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, p. 103.
  • [14] Maroulis, G. Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules, J. Chem. Phys., 113, 5, 2000.
  • [15] Pearson, R. Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem., 54, 1423-1430, 1989.
  • [16] Cramer, J.C. Essentials of Computational Chemistry, Theory And Models, John Wiley And Sons, Usa, 596, 2002.