YER RADARI VERİLERİNDE YANAL YANSIMALARIN GÖÇ VE TERSİNE GÖÇ İŞLEMİ İLE ATILMASI

Bu çalışmada yer radarı verilerinden yanal yansımaların arındırılması için yeni bir yöntem önerilmektedir. Uygulanan yöntem birkaç adımda gerçekleştirilmektedir. Bunlar göç, yanal yansıma genliklerin toplandığı yerlerin sıfırlanarak veriden atılması ve son olarak tersine göç işlemleridir. Bu çalışmada da önerilen işlem dizisi laboratuvarda bir kum havuzu içerisinde gömülü bir boru üzerinde toplanan yer radarı profilinde gösterilmiştir. Gömülü borunun oluşturduğu yansımanın haricinde kum havuzu ve kum havuzunun iki yan tarafındaki hava sınırının oluşturduğu yansımalar da gözlemlenmiştir. Yanal yansımalar, önce göç, işlemi ile gerçek yansıma yerlerine taşınmış, taşınan yerlerin genlikleri sıfırlanarak veriden atılmış ve en son tersine göç işlemi ile veri yanal yansımalardan arındırılmış haline dönüştürülmüştür. Bu sayede yanal yansımalar veriden arındırılarak gömülü borunun oluşturduğu yansıma daha iyi görüntülenmiştir. Ayrıca, yanal yansımalar içeren bir modelleme verisine de benzer adımlar uygulanmış ve yanal yansımalar veriden arındırılmıştır. Önerilen yöntemin muhtemel yanal yansımaların verilerden arındırılması adına duvarlara veya ağaçlara yakın olan yerlerdeki yer radarı profilleri ile bina içinde yapı unsurlarının tespit edilmesine yönelik yer radarı uygulamalarında kullanılması önerilmektedir.

ELIMINATING THE SIDE REFLECTION ON GPR DATA BY MIGRATION AND DEMIGRATION

In this study, a new method is suggested to eliminate side reflections. The suggested method is consisted of couple of steps. These steps are: migration, muting the collected amplitudes of side reflections after migration and demigration. In order to achieve that on a ground-penetrating radar (GPR) profile, an experimental laboratory model was built. The model was filled with dry sand with a buried pipe to obtain reflection on GPR profile. Side reflections from both sides were also observed on the radargram, which are caused by the boundary of experimental model and air interference. The side reflections were removed from the radargram by suggested steps accordingly. These are; moving side reflections to real reflection locations by migration, muting the amplitudes of side reflections at real locations, and demigration of data to obtain it without side reflections. The reflection of pipe was seen clearer after side reflection is eliminated. Also, same procedure was applied to a modeled data to eliminate side reflections. The suggested method can be applied to radargrams to eliminate side reflections such GPR surveys, when data is collected near trees or walls. Additionally, the suggested method can be helpful to eliminate side reflections on non-destructive testing applications in buildings.

___

  • Balkaya, Ç., Kalyoncuoğlu, Ü., Özhanlı, M., Merter, G., Çakmak, O., Güven, İT, 2018. Ground- penetrating Radar and Electrical Resistivity Tomography Studies in the Biblical Psidian Antioch City, Southwest Anatolia. Archaeological Prospection, 25 (4), 285-300.
  • Benedetto, A., Tosti, F., Bianchini Ciampoli, L., D’Amico, F., 2017. An Overview Of Ground-Penetrating Radar Signal Processing Techniques For Road Inspections. Signal Processing, 132, 201–209.
  • Ciampoli, L.B., Tosti, F., Economou, N., Benedetto, F., 2019. Signal Processing of GPR Data for Road Surveys. Geosciences, 9.
  • Claerbout, J.F., 1985, Imaging The Earth’s Interior. Blackwell Scientific Publications.
  • Damcı, E., 2004. Bartın-Amasra Açıklarında Deniz Sismiği Verilerinin Derinlik Ortamında Göç Uygulamaları ve Bölge Jeolojisi ile İlişkilendirilmesi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, İstanbul.
  • Dondurur, D., 2009. Deniz Sismiğinde Veri İşlem, Ankara: TMMOB Jeofizik Mühendisleri Odası Eğitim Yayınları, Yayın No:11.
  • Gazdag, J., 1978. Wave Equation Migration with the Phase-shift Method. Geophysics, 43, 1342-1351.
  • Giannakis, I., Giannopoulos, A., Warren, C., Davidson, N., 2015. Numerical Modelling And Neural Networks For Landmine Detection Using Ground Penetrating Radar. 2015 8th Int. Work. Adv. Gr. Penetrating Radar, IWAGPR 2015.
  • Giannopoulos, A., 2005. Modelling Ground Penetrating Radar By Gprmax. Construction And Building Materials, 19 (10), 755–762.
  • Kadıoğlu, S., 2010. Definition of Buried Archaeological Remains With a New 3D Visualization Technique of a Ground-penetrating Radar Data Set in Temple Augustus in Ankara, Turkey. Near Surface Geophysics, 8 (5), 397-406.
  • Kadıoğlu, S., 2018. Research Of The Sea-Filled Airport OGU in The Black Sea, Turkey, Using Ground Penetrating Radar Method. Construction and Building Materials, 158, 1123-1133.
  • Kaplanvural, İ., Pekşen, E., Özkap, K., 2020. 1D Waveform Inversion Of GPR Trace By Particle Swarm Optimization. Journal of Applied Geophysics, 181, 104157.
  • Kaplanvural, İ., Özkap, K., Pekşen, E., 2021. Influence of Water Content Investigation on GPR Wave Attenuation For Early Age Concrete in Natural Air-drying Condition. Construction and Building Materials, 297, 123783.
  • Kurtuluş, C., 2002. Sismik Arama, Kocaeli: Kocaeli Üniversitesi Yayınları, Yayın No: 55.
  • Lei, W., Hou, F., Xi, J., Tan, Q., Xu, M., Jiang, X., Liu, G., Gu, Q., 2019. Automatic Hyperbola Detection And Fitting İn GPR B-Scan İmage. Automation in Construction, 106, 102839.
  • Moran, M.L., Greenfield, R.J., Arcone, S.A., Delaney, A.J., 2000. Multidimensional GPR Array Processing Using Kirchhoff Migration. Journal of Applied Geophysics, 43, 281–295.
  • Özdemir, C., Demirci, Ş., Yiǧit, E., Yilmaz, B., 2014. A Review On Migration Methods In B-Scan Ground Penetrating Radar Imaging. Mathematical Problems in Engineering, 2014, 280738.
  • Özkap, K., Pekşen, E., Kaplanvural, İ., Çaka, D., 2020. 3D Scanner Technology Implementation to Numerical Modelling of GPR. Journal of Applied Geophysics, 179, 104086.
  • Özkap, K., Pekşen, E., 2021. Yer Radarı (GPR) İçin 3B Sayısal Modellemede Fiziksel Parametre Etkileri : DNAPL Örneği. Mühendislik Bilimleri ve Tasarım Dergisi, 9 (2), 476-494.
  • Plattner, A.M., 2020. GPRPy: Open-Source Ground-Penetrating Radar Processing And Visualization Software. The Leading Edge, 39, 332–337.
  • Prego, F.J., Solla, M., Puente, I., Arias, P., 2017. Efficient GPR Data Acquisition to Detect Underground Pipes, NDT & E International, 91 (5), 22-31.
  • Schneider, W., 1978. Integral Formulation for Migration in Two and Three Dimension. Geophysics, 43, 49-76.
  • Smitha, N., Ullas Bharadwaj, D.R., Abilash, S., Sridhara, S.N., Singh, V., 2016. Kirchhoff And F-K Migration To Focus Ground Penetrating Radar Images. International Journal of Geo-Engineering, 7.
  • Stolt, R. H., 1978. Migration by Fourier Transform. Geophysics, 43, 23-48.
  • Yilmaz, Ö., 2001. Seismic Data Analysis. Society of Exploration Geophysicists.
  • Zhang, X., Feng, X., Zhang, Z., Kang, Z.; Chai, Y., You, Q., Ding, L., 2019. Dip Filter and Random Noise Suppression for GPR B-Scan Data Based on a Hybrid Method in f – x Domain. Remote Sensing, 11, 2180.
  • Zhou, H., Sato, M., Liu, H., 2005. Migration Velocity Analysis And Prestack Migration Of Common-Transmitter GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 43, 86–91.