STANDART TEST PERVANESİ ANALİZLERİ İLE HESAPLAMALI AKIŞKANLAR DİNAMİĞİ ANALİZ ALTYAPISININ DOĞRULANMASI

Bu çalışmada, literatürde standart test pervanesi olarak yer alan iki farklı gemi testpervanesinin analizleri yapılmış ve performans değerleri hesaplanmıştır. Analiziyapılan pervanelerden biri, DTMB (David Taylor Model Basin) 4119 kodu ileadlandırılan, David Taylor model deney havuzunda geliştirilmiş, 5 pervaneli birseriye ait ve doğrulama çalışmalarında sıklıkla kullanılan, 3 kanatlı bir pervanedir.Diğeri ise, PPTC (Potsdam Propeller Test Case) VP1304 olarak adlandırılan, birçokakademik çalışmada kullanılmış, 5 kanatlı ve kanat açıları kontrol edilebilir birpervanedir.DTMB 4119 ve VP 1304 standart test pervanelerinin analizleri ANSYS kullanılarakHesaplamalı Akışkanlar Dinamiği (HAD) yöntemiyle yapılmıştır. Analiz sonuçları ilebulunan performans değerlerindeki hata oranları hesaplanmış ve literatürdekidiğer çalışmalar ile değerlendirilmiştir. DTMB 4119 pervanesi analiz sonuçları,panel metodu ve HAD yöntemiyle elde edilen sonuçlar ile karşılaştırılmıştır. Ayrıca,VP1304 pervanesi için hesaplanan performans parametreleri açık su pervane testisonuçları ile karşılaştırılmıştır. Bu çalışma ile pervane analizleri için oluşturulananaliz altyapısı test edilmiş olup izlenen yöntem HAD analiz altyapısının birdoğrulama yöntemi olarak gerçekleştirilmiştir.

VERIFICATION OF THE COMPUTATIONAL FLUID DYNAMICS ANALYSIS SUBSTRUCTURE BY STANDARD TEST PROPELLER ANALYZES

In this study, two different marine propellers, cited as standard test propellers in literature, were analysed and performance values were calculated. One of the analysed propellers is a propeller called David Taylor Model Test Basin (DTMB) 4119, developed in David Taylor Model Test Basin, one of the 5-propeller series with 3 blades and frequently used in validation studies by many researchers. The other one is another marine propeller, called PPTC (Potsdam Propeller Test Case) VP1304, with a 5-blade and controllable pitch type, also used as a benchmark propeller in many academic studies. DTMB 4119 and VP 1304 propellers were analysed with ANSYS, for employing the Computational Fluid Dynamics (CFD) method. The error rates in performance values were calculated and evaluated against other studies in literature. DTMB 4119 propeller analysis results were compared against the results obtained using panel and RANS methods. Furthermore, VP1304 analysis results were examined with the results obtained in open water tests cited literature. With this study, the analysis infrastructure established for analysing the marine propellers was tested and the methodology followed herein was considered as a validation of the CFD infrastructure.

___

  • Ansys Kullanıcı Rehberi, 2018
  • Ansys Teori Rehberi, 2018
  • Bal, Ş. (2011). A method for optimum cavitating ship propellers. Turkish journal of engineering and environmental sciences, 35(3), 319-338.
  • Barkmann, 2011 U. Barkmann, Potsdam Propeller Test Case (PPTC) – Open Water Tests with the Model Propeller VP1304 Report 3752, Schiffbau- Versuchsanstalt Potsdam (2011)
  • Becchi, P., & Pittaluga, C. (2005). Comparison between RANSE calculation and Panel Method Results for the Hydrodynamic Analysis of Marine Propeller. RINA Marine CFD, Royal Institution of Naval Architects.
  • Brizzolara, S., Villa, D., & Gaggero, S. (2008). A systematic comparison between RANS and Panel Methods for Propeller Analysis. Proc. Of 8th International Conference on Hydrodynamics, Nantes, France.
  • Bulten, N., & Oprea, A. I. (2006, September). Evaluation of McCormick′s rule for propeller tip cavitation inception based on CFD results. In Sixth International Symposium on Cavitation. Wageningen: American Institute of Physics.
  • Carlton, J. Marine Propellers and Propulsion. Butteworth-Heinemann, Second Edition, August 6, 2007 USA, ISBN-10: 0750681500.
  • Ekinci, S., Çelebi, U. B., Bal, M., Amasyali, M. F., & Boyaci, U. K. (2011). Predictions of oil/chemical tanker main design parameters using computational intelligence techniques. Applied Soft Computing, 11(2), 2356-2366.
  • Gaggero, S., & Brizzolara, S. (2007). Exact modeling of trailing vorticity in panel method for marine propeller. Proceedings of ICMRT. Iscia (IT).
  • Kawamura, T. (2006). Simulation of unsteady cavitating flow around marine propeller using a RANS CFD code. In 6th International Symposium on Cavitation, Wageningen, Nederland, 2006.
  • Kulczyk, J., SKRABURSKI, Ł., & ZAWIŚLAK, M. (2007). Analysis of screw propeller 4119 using the Fluent system. Archives of civil and mechanical engineering, 7(4), 129-137.
  • Lee, C. S., Kim, G. D., & Kerwin, J. E. (2004). A B-spline higher order panel method for analysis of steady flow around marine propellers. In 25-th Symposium on Naval Hydrodynamics (Vol. 1, pp. 174-189).
  • Li, Da-Qing, (2006). Validation of RANS predictions of open water performance of a highly skewed propeller with experiments. Journal of Hydrodynamics, Ser. B. Volume 18, Issue 3, Supplement, July 2006, Pages 520-528
  • Mach, 2011 K.P. Mach, Potsdam Propeller Test Case (PPTC) – LDV Velocity Measurements with the Model Propeller VP1304, Report 3754, Schiffbau- Versuchsanstalt Potsdam (2011)
  • Morgut, M. ve Nobile, E. Influence of the Mass Transfer Model on the Numerical Prediction of the Cavitating Flow around a Marine Propeller. Second International Symposium on Marine Propulsors, SMP’11, Hamburg, Germany, June 2011.
  • Philips, A. B., Turnock, S. R., Furlong, M., Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver, Ocean Engineering, Volume 36, Issues 15– 16, November 2009, Pages 1217-1225.
  • Rhee S.H., Joshi S., Computational Validation for Flow around Marine Propeller using Unstructure Mesh Based Navier-Stokes Solver. JSME International Journal Series B, Vol. 48, pp.562-570, 2005.
  • Seil, G. J., Widjaja, R., Anderson, B., & Brandner, P. A. (2008). Computational Analysis of Submarine Propeller Hydrodynamics and Validation Against Experimental measurement. In Underwater Defence Technology Pacific 2008 (Vol. 400, pp. CDRom).