PARÇACIK BOYUTUNA BAĞLI FÜME SİLİKA BAZLI KESME İLE KALINLAŞAN AKIŞKANLARIN REOLOJİK DAVRANIŞI

Üç farklı ortalama parçacık boyutuna sahip (8, 12 ve 18nm) füme silikaların PEG200 taban akışkanına dört farklı kütlesel fraksiyon aralığında (%5, 10 ,15 ve 20) dağıtılması ile elde edilen süspansiyon akışkanların reolojik (viskozite, kritik kesme hızı, depolama modülü ve kayıp modülleri) davranışları incelenmiştir. Doğrusal ve doğrusal olmayan viskoelastik ölçümlerden elde edilen bulgular da, kütlece %5 fraksiyonda hazırlanan süspansiyonların Newton kuralına uyduğunu ayrıca artan fraksiyona bağlı olarak viskoziteninde arttığı gözlemlenmiştir. Düşük kütlesel fraksiyonlarda nanoparçacık boyutu ile kaymadan dolayı viskozite kalınlaşmasına etki ettiği gözlemlenirken, kütlesel fraksiyon artışı ile bu etkinin azaldığı da görülmüştür. Ayrıca tüm parçacık boyutu ve fraksiyonlarda depolama ve kayıp modulüslerinin salınım gerilimleri incelendiğinde süspansiyonların viskoz davranış özelliği göstermiştir. Bu bulgular daha güçlü ve hafif kesme ile kalınlaşan süspansiyonların hazırlanmasını ve balistik esaslı çalışmalarda kullanılması açısından önem arz etmektedir. 

RHEOLOGICAL BEHAVIOR OF PARTICLE SIZE DEPENDENT FUMED SILICA BASED SHEAR THICKENING FLUIDS

The rheological properties (viscosity, critical shear rate, storage modulus and loss modulus) of suspension fluids produced by dispersing fume silicates with three different mean particle sizes (8, 12 and 18 nm) in PEG200 base fluid at four different fractional ranges (5, 10, 15 and 20%) were investigated. In the findings obtained from linear and nonlinear viscoelastic measurements, it was observed that the suspensions prepared in 5% fraction increased in viscosity due to increasing fraction. It is observed that in low mass fractions the nanoparticle size affects the viscosity thickening due to the slip, this effect leads to be reduced by the increase of the mass fraction. Furthermore, when the storage modulus / loss modulus vs strain in all particle sizes and fractions were examined, it was observed that for all suspensions have viscous behavior characteristics. This findings are important for the preparation of suspensions with stronger and light-weight shear thickening fluids and for use in ballistic related works. 

___

  • Bossis, G., Brady, J.F. 1989. The rheology of Brownian suspensions, The Journal of Chemical Physics, 91, 1866-1874.
  • Boyle, J., Manas-Zloczower, I., Feke, D.L. 2004. Influence of Particle Morphology and Flow Conditions on the Dispersion Behavior of Fumed Silica in Silicone Polymers, Part. Part. Syst. Charact., 21, 205-212.
  • Cao, S., Chen, Q., Wang, Y., Xuan, S., Jiang, W., Gong, X. 2017. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid, Composites: Part A, 100, 161-169.
  • Choi, U.S. 2009. Nanofluids: from vision to reality through research, Journal of Heat Transfer, 131, 1-9.
  • Crawford, N.C., Popp, L.B., Johns, K.E., Caire, L.M., Peterson, B.N., Liberatore, M.W. 2013. Shear thickening of corn starch suspensions: Does concentration matter?, Journal of Colloid and Interface Science, 396, 83–89.
  • Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetze, E.D. 2007. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Techn., 67, 565–578.
  • Ding, J., Li, W., Shen, S.Z. 2011. Research and applications of shear thickening fluids, Recent Patents Mater Sci, 4, 43-49.
  • Duvarcı Ö. Ç. 2009. Rheological Behavior Of Nanocrystalline / Submicron Ceramic Powder Dispersions. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Fischer, C., Braun, S.A., Bourban, P.E., Michaud, V., Plummer, C.J.G., Manson, J.A.E. 2016. Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Materials and Structures, 15, 1467–1475.
  • Genovese, D.B. 2012. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Advances in Colloid and Interface Science, 171–172, 1–16.
  • Gurgen, S., Kushan, M.C. 2017. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Composites Part A: Applied Science and Manufacturing, 94, 50-60.
  • Gurgen, S., Kushan, M.C., Li, W. 2016. The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Australia Rheology Journal, 28(2), 121-128.
  • Gurgen, S., Kushan, M.C., Li, W. 2017. Shear thickening fluids in protective applications: A review, Progress in Polymer Science, 75, 48-72.
  • Gurgen, S., Li, W., Kushan, M.C. 2016. The rheology of shear thickening fluids with various ceramic particle additives, Materials & Design, 104, 312-319.
  • Huang, W., Wu, Y., Qiu, L., Dong, C., Ding, J., Li, D. 2015. Tuning Rheological Performance of Silica Concentrated Shear Thickening Fluid by Using Graphene Oxide, Advances in Condensed Matter Physics, 734250, 1-5.
  • Jiang, T., Zukoski, C.F. 2012. Role of Particle Size and Polymer Length in Rheology of Colloid−Polymer Composites, Macromolecules, 45, 9791-9803.
  • Kawaguchi, M. 2017. Dispersion stabilities and rheological properties of fumed silica suspensions, Journal of Dispersion Science and Technology, 38(5), 642-660.
  • Khandavalli, S., Rothstein,J.P. 2014. Extension rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution, J. Rheol., 58(2), 411-431.
  • Lee, Y.S., Wetzel, E.D., Wagner, N.J. 2003. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials Science, 38, 2825-2833.
  • Maranzano, B.J., Wagner, N.J. 2001. The effects of particle size on reversible shear thickening of concentrated colloidal suspensions. J Chem Phys, 114, 10514-10527.
  • Moriana, A.D., Tian, T., Sencadas, V., Li, W. 2016, Comparison of rheological behaviors with fumed silica-based shear thickening fluids, Korea-Australia Rheology Journal, 28(3), 197-205.
  • Morrison, F.A. 2001. Understanding Rheology, Oxford University Press, New York.
  • Peter, O.E., Ouellet, S., Loiseau, J., Frost, D.L., Higgins, A.J. 2015. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction, International Journal of Impact Engineering, 85, 83-96.
  • Sacca, A., Pedicini, R., Carbone, A., Gatto, I., Passalacqua, E. 2007. Comparative investigation on nano-sized SiO2 as a filler for Proton Exchange Membranes (PEM) Fuel Cells, ECS Transactions, 11, 357-366.
  • Warren, J., Offenberger, S., Toghiani, H., Pittman, C.U., Lacy, T.E., Kundu, S. 2015. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions, ACS Applied Materials & Interfaces, 7, 18650-18661.
  • Wong, K.V., Leon, O.D. 2010. Applications of Nanofluids: Current and Future, Adv. Mech. Eng., 2, 1-11.
  • Yıldız, S. 2013. Synthesis and Rheological Behavior of Shear Thickening Fluid for Liquid Armor Applications. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Zhang, X.Z., Li, W.H., Gong, X.L. 2008. The rheology of shear thickening fluid and the dynamic performance of an STF-filled damper, Smart Materials and Structures, 17, 1-7.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi