ÖN ALAŞIMLANDIRILMIŞ Ti6Al4V TOZU İLE Ti(CP) TOZUNUN SIKIŞTIRILABİLME ŞARTLARININ ARAŞTIRILMASI

TM ile üretilen titanyum ürünleri birçok endüstriyel alanda, tıp alanında ve diğer sektörlerde kullanılmaktadır. Bu çalışmanın amacı farklı sıkıştırma basınçlarında titanyum tozuna ilave edilen yağlayıcı (Zn-Stearat) miktarlarının ham yoğunluğa, ham dayanıma, kalıptan ürünün çıkartılması için gerekli olan çıkartma kuvvetine, sinterlenmiş yoğunluğa ve diğer mekanik özelliklere etkisinin araştırılmasının yanı sıra kırık yüzeylerin incelenmesidir. Bu deneysel çalışmada, titanyum tozuna eklenen ve karıştırılan yağlayıcı miktarları (0.5%, 0.75%, 1% ve 1.1%) olarak belirlenmiş ve bu oranlarla karıştırılan titanyum tozları farklı basınçlarda (Ti6Al4V için 650- 900 MPa) ve[Ti(CP)] için 400-650 MPa) sıkıştırılmıştır. Her iki çeşit Titanyum tozundan kompaktlar 1250Cᵒ sıcaklıkta argon gazlı atmosferik fırında sinterlenmiştir. Sinterlenmiş numunelere üç nokta eğme deneyi, darbe deneyi, sertlik deneyi ve SEM-EDS analizleri yapılmıştır. 

INVESTIGATION ON THE COMPACTABLE CONDITIONS OF TI POWDERS PRE-ALLOYED TI6AL4V AND TI(CP)

The titanium products produced by powder metallurgy method, a decent position among the other materials and production methods. The aim of this study is to investigate the effect of lubrication (Zn-Stearat) which added to the titanium powder at different compaction pressure, to the green density, green strength, ejecting force to eject the products from the die, sintered density and others mechanical properties as well as the metallography for fracture surfaces of specimens. Then, all results of between two type of titanium (Ti6Al4V and Ti (CP)) powders are compared. In this experimental study, cold pressing with single acting press are applied. The amounts of lubrications (Zn-Stearat) are added and mixed with titanium powder is (0.5%, 0.75%, 1% and 1.1%) and each ratio are compacted in steel die at different compaction pressure (650- 900 MPa for Ti6Al4V) and (400-650 MPa for Ti (CP)). Two types of titanium powder compacts are sintered in 1250Cᵒ in argon gas atmospheric furnace. Three-point bending test, impact test, hardness test and SEM –EDS analysis were applied to all specimens. 

___

  • Adams, J. W., Duz, V. A., Moxson, V., & Roy, W. R. Low Cost Blended Elemental Titanium Powder Metallurgy.
  • Bosman, H. L., Ve Blaine, D. C. (2014). Influence Of Powder Particle Size Distribution On The Properties Of Press-And-Sintered Titanium And Ti-6al-4v Preforms. Advanced Materials Research, (1019).
  • Delavari, M., Salarvand, A., Rahi, A., Ve Shahri, F. (2011). The Effect Of Powder Metallurgy Process Parameters On Mechanical Properties Of Micro And Nano-İron Powder. International Journal Of Engineering, Science And Technology, 3(9), 86-94.
  • Fang, Z. Z., Ve Sun, P. (2012). Pathways To Optimize Performance/Cost Ratio Of Powder Metallurgy Titanium–A Perspective. In Key Engineering Materials (Vol. 520, Pp. 15-23). Trans Tech Publications. Gronostajski, Z., Bandoła, P., Ve Skubiszewski, T. (2009). Influence Of Cold And Hot Pressing On Densification Behaviour Of Titanium Alloy Powder Ti6al4v. Archives Of Civil And Mechanical Engineering, 9(2), 47-57.
  • Handbook, A. S. M. (1998). Volume 7. Powder Metal Technologies And Applications, 435.
  • Hryha, E., Dudrova, E., Ve Bengtsson, S. (2008). Influence Of Powder Properties On Compressibility Of Prealloyed Atomised Powders. Powder Metallurgy, 51(4), 340-342.
  • Kateřina Skotnicová, Miroslav Kursa Ve Ivo Szurman. (2014). Powder Metallurgy. University Text Book, Faculty Of Metallurgy And Materials Engineering, Vsb- Technıcal Unıversıty Of Ostrava.
  • Liu, X., Chu, P. K., Ve Ding, C. (2004). Surface Modification Of Titanium, Titanium Alloys, And Related Materials For Biomedical Applications. Materials Science And Engineering: R: Reports, 47(3), 49-121.
  • Upadhyaya, G. S. (2002). Powder metallurgy technology. Cambridge Int Science Publishing.
  • W. Brian James, Hoeganaes Corporation. (2015). Powder Metallurgy Methods and Applications. ASM Handbook, Volume 7, Powder Metallurgy.
  • Wang, H., Fang, Z. Z., ve Sun, P. (2010). A critical review of mechanical properties of powder metallurgy titanium. International journal of powder metallurgy, 46(5), 45-57. Welsch, G., Lee, Y. T., Eloff, P. C., Eylon, D., & Froes, F. H. (1983). Deformation behavior of blended elemental ti-6ai-4v compacts. Metallurgical Transactions A, 14(3), 761-769.
  • Williams, J. C. (2007). Titanium. Engineering Materials and Processes. Springer.
  • Yalçın, B. (2007). Toz metalurjisi yöntemiyle imal edilen titanyum alaşımı implantların temel özelliklerinin araştırılması (Doctoral dissertation, SDÜ Fen Bilimleri Enstitüsü).
  • Yan, Y., Nash, G. L., ve Nash, P. (2013). Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. International Journal of Fatigue, 55, 81-91.
  • Yu, C. (2014). Ti powder sintering: impurity, sintering atmosphere and alloy design (Doctoral dissertation, ResearchSpace@ Auckland).
  • Zak Fang, Z. (2010). Sintering of advanced materials: fundamental and processes.