NADİR TOPRAK KATKISININ SPİNEL FERRİTLERİN MANYETİK ÖZELLİKLERİNE ETKİSİ

Nano boyutlu ferritler (NSF), yüksek yüzey alanı-hacim oranı, yüksek doygunluk mıknatıslanması, başlangıç manyetik geçirgenliği, vb. özellikleriyle son yıllarda büyük ilgi çeken manyetik nanoparçacıklardır (MNP). Nikel-bakır-çinko ferritler ise özellikle cep telefonlarında, video kameralarda, dizüstü bilgisayarlarda vs. bulunan çok katmanlı yonga indüktörlerinde (MLCI'lar) kullanılmaktadır. MLCI'ler alternatif gümüş elektrot ve yumuşak ferrit katmanlarından oluşur. Bu nedenle, daha az ferrit katmanı gerektiren ve dolayısıyla daha da küçültülmüş cihazların elde edilmesi için ferritlerde manyetik özelliklerin geliştirilmesi önem arz etmektedir. Çalışmamızın amacı, Ni-Cu-Zn ferrit nanoparçacıklarına nadir toprak katkısının etkilerini araştırmaktır. Çeşitli konsantrasyonlarda nadir toprak metal (RE) iyonları Eu3+, Tb3+ ve Dy3+ ile katkılanmış Ni-Cu-Zn NSF'ler bir sonokimyasal yöntemle elde edildi. Ni-Cu-Zn NSF'lerin kristal yapısını, kimyasal bağını, morfolojisini ve manyetik özelliklerini sırasıyla X-ışını toz kırınımı (XRD), Fourier dönüşümü kızılötesi spektroskopisi (FT-IR), taramalı elektron mikroskobu (SEM) ve titreşimli numune manyetometrisi (VSM) ile inceledik. Numunelerin faz saflığı, XRD analizi ile doğrulandı. Spinel ferritlerin gerilme titreşimleri FT-IR analizi ile doğrulandı. VSM sonuçları, nadir toprak sübstitüsyonunun Ni-Cu-Zn NSF'lerin manyetik özellikleri üzerinde önemli bir etkisi olduğunu ortaya koymaktadır.

INFLUENCE OF RARE EARTH SUBSTITUTION ON THE MAGNETIC PROPERTIES OF SPINEL FERRITES

Nano-size ferrites (NSF) are magnetic nanoparticles (MNPs) which have attracted great interest in the last decades owing to their high surface area-to-volume ratio, high saturation magnetization, initial permeability, etc. Nickel-copper-zinc ferrites are especially used in multi-layer chip inductors (MLCIs) which are found in mobile phones, camcorders, notebook computers, etc. MLCIs are composed of alternating layers of silver electrodes and soft ferrites. Thus, it is important to develop magnetic characteristics in ferrites for requiring less ferrite layers and hence to obtain further miniaturized devices. The goal of our study is to investigate the effect of rare earth substitution of Ni-Cu-Zn ferrite nanoparticles. Ni-Cu-Zn NSFs substituted with rare earth metal (RE) ions Eu3+, Tb3+, and Dy3+ in varying concentrations were obtained by a sonochemical method. We investigated the crystal structure, chemical bonding, morphology and magnetic characteristics of the Ni-Cu-Zn NSFs by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM), respectively. The phase purity of the samples was confirmed by the XRD analysis. Stretching vibrations of spinel ferrites were verified by the FT-IR analysis. VSM results reveal that the rare earth substitution has a significant effect on the magnetic properties of the Ni-Cu-Zn NSFs.

___

  • Ahmad, S.I., Ansari, S.A., Ravi Kumar, D., 2018. Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Materials Chemistry and Physics, 208, 248-257.
  • Ahmed, M., Ramulu Torati, S., Parvatheeswara Rao, B., Abdel Hamed, M., Kim, C. 2015. Size controlled sonochemical synthesis of highly crystalline superparamagnetic Mn–Zn ferrite nanoparticles in aqueous medium.
  • Almessiere, M.A., Demir Korkmaz, A., Slimani, Y., Nawaz, M., Ali, S., Baykal, A., 2019a. Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceramics International, 45, 3449-3458.
  • Almessiere, M.A., Slimani, Y., Güner, S., Baykal, A., Ercan, I., 2019b. Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. Journal of Rare Earths, 37, 871-878.
  • Almessiere, M.A., Slimani, Y., Güner, S., Nawaz, M., Baykal, A., Aldakheel, F., Akhtar, S., Ercan, I., Belenli, İ., Ozçelik, B., 2019c. Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceramics International, 45, 8222-8232.
  • Ansari, M.M.N., Khan, S., Ahmad, N., 2018. Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 465, 81-87.
  • Batoo, K.M., Ansari, M.S., 2012. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Research Letters, 7, 112.
  • Caruntu, D., Caruntu, G., O'Connor, C.J., 2007. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. Journal of Physics D: Applied Physics, 40, 5801.
  • Dantas, J., Santos, J.R.D., Cunha, R.B.L., Kiminami, R.H.G., Costa, A.C.F., 2013. Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters. Materials Research, 16, 625-627.
  • Dasan, Y.K., Guan, B.H., Zahari, M.H., Chuan, L.K., 2017. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite. PLOS ONE, 12, e0170075.
  • Fu, Y.-P., Chang, W.-K., Wang, H.-C., Liu, C.-W., Lin, C.-H., 2010. Synthesis and characterization of anatase TiO2 nanolayer coating on Ni–Cu–Zn ferrite powders for magnetic photocatalyst. Journal of Materials Research, 25, 134-140.
  • Gabal, M.A., Asiri, A.M., AlAngari, Y.M., 2011. On the structural and magnetic properties of La-substituted NiCuZn ferrites prepared using egg-white. Ceramics International, 37, 2625-2630.
  • Goswami, P.P., Choudhury, H.A., Chakma, S., Moholkar, V.S., 2013. Sonochemical Synthesis and Characterization of Manganese Ferrite Nanoparticles. Industrial & Engineering Chemistry Research, 52, 17848-17855.
  • Harris, V.G., Sokolov, A.S., 2019. The Self-Biased Circulator: Ferrite Materials Design and Process Considerations. Journal of Superconductivity and Novel Magnetism, 32, 97-108.
  • Harzali, H., Marzouki, A., Saida, F., Megriche, A., Mgaidi, A., 2018. Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R = Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. Journal of Magnetism and Magnetic Materials, 460, 89-94.
  • Jacob, B.P., Thankachan, S., Xavier, S., Mohammed, E.M., 2013. Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. Journal of Alloys and Compounds, 578, 314-319.
  • Kadam, R.H., Karim, A., Kadam, A.B., Gaikwad, A.S., Shirsath, S.E., 2012. Influence of Cr3+ substitution on the electrical and magnetic properties of Ni0.4Cu0.4Zn0.2Fe2O4 nanoparticles. International Nano Letters, 2, 28.
  • Kesavamoorthi, R., Raja, C.R., 2017. Substitution Effects on Rare-Earth Ions-Doped Nickel-Zinc Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 30, 1207-1212.
  • Khan, M.Z., Gul, I.H., Anwar, H., Ameer, S., Khan, A.N., Khurram, A.A., Nadeem, K., Mumtaz, M., 2017. Massive dielectric properties enhancement of MWCNTs/CoFe2O4 nanohybrid for super capacitor applications. Journal of Magnetism and Magnetic Materials, 424, 382-387.
  • Liang-Qiu, G., Guo-Jian, Y., Ying, W., Fu-Lin, W., 2011. Study of NiCuZn ferrite powders and films prepared by sol—gel method. Chinese Physics B, 20, 027503.
  • Néel, M.L., 1948. Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme. Annales de Physique, 12, 137-198.
  • Priyadharsini, P., Pradeep, A., Chandrasekaran, G., 2009. Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. Journal of Magnetism and Magnetic Materials, 321, 1898-1903.
  • Sadaqat, A., Almessiere, M., Slimani, Y., Guner, S., Sertkol, M., Albetran, H., Baykal, A., Shirsath, S.E., Ozcelik, B., Ercan, I., 2019. Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceramics International, 45, 22538-22546.
  • Saura-Múzquiz, M., Granados-Miralles, C., Stingaciu, M., Bøjesen, E.D., Li, Q., Song, J., Dong, M., Eikeland, E., Christensen, M., 2016. Improved performance of SrFe12O19 bulk magnets through bottom-up nanostructuring. Nanoscale, 8, 2857-2866.
  • Sharifi, I., Shokrollahi, H., Amiri, S., 2012. Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of magnetism and magnetic materials, 324, 903-915.
  • Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I., 2019. Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceramics International, 45, 6021-6029.
  • Stoner, E.C., Wohlfarth, E.P., 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240, 599-642.
  • Taghavi Fardood, S., Ramazani, A., Golfar, Z., Joo, S.W., 2017. Green synthesis of Ni‐Cu‐Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Applied Organometallic Chemistry, 31, e3823.
  • Umut, E., Coşkun, M., Pineider, F., Berti, D., Güngüneş, H., 2019. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. J Colloid Interface Sci, 550, 199-209.