ISM 2.45 GHz MİKROŞERİT İMPLANT ANTEN TASARIMI VE DOKU İÇİ ÖLÇÜMLERİ

Bu çalışmada doku içi uygulamalar için kullanılabilecek özgün bir mikroşerit implant anten tasarımı önerilmiştir. Anten boyutu 30 mm*28 mm*1.59 mm olarak tasarlanmıştır. Tasarımında dielektrik sabiti 4.3, kayıp tanjantı 0.025 ve yüksekliği 1.52 mm olan FR4 taban malzemesi kullanılmıştır. İmplant antenin analizi CST Microwave Studio programında gerçeklenmiştir. İstenilen değerler elde edildikten sonra ise doku modeli oluşturularak deri doku içerisine implant anten yerleştirilmiştir. Tasarlanan mikroşerit implant antenin ISM bandında 2.45 GHz’de geri dönüş kaybı ve SAR değeri ölçülmüştür. Yapılan ölçümler sonucunda doku içi ve doku dışı sırasıyla geri dönüş kaybı -18 dB ve -33 dB, SAR değeri ise 153 W/kg olarak gözlemlenmiştir. Daha sonra antenin baskı-devre teknolojisi ile gerçeklenmesi yapılıp, deri dokusunun özelliklerini gösteren bir fantom sıvı oluşturulmuş ve anten bu sıvı içine yerleştirilmiştir. Son olarak da tasarımı yapılan antenin simülasyon ve deney sonuçları değerlendirilerek literatürdeki diğer çalışmalarla karşılaştırılması yapılmıştır. Deri dokusu içerisindeki ölçüm sonuçlarının da benzetim sonuçları ile oldukça uyumlu olduğu gözlemlenmiştir.

ISM 2.45 GHZ MICROSTRIP IMPLANT ANTENNA DESIGN AND IN-TISSUE MEASUREMENTS

In this study, a micro-strip implant antenna that can be used in-tissue applications was proposed. Antenna size was designed as 30mm * 28mm * 1.59mm. In the design, a FR4 substrate material was used whose permittivity is 4.3, loss tangent is 0.025 and height is 1.52 mm. The analysis of the implant antenna was simulated in the CST Microwave Studio program. After obtaining the desired performance, a tissue model was created and an implant antenna was placed in the skin tissue. Return loss and SAR value of the designed antenna were measured in the 2.45 GHz ISM band. As a result, return losses were observed as -18 dB and -33 dB and SAR was 153 W / kg inside and outside the tissue respectively. Then, the antenna was manufactured with PCB and a phantom liquid was created that provides the electromagnetic properties of the skin tissue and the antenna was placed in this liquid. Finally, the simulation and experiment results of the designed antenna were evaluated and compared with literature studies. It has been observed that the measurement results in the skin tissue are well aligned with the simulation results.

___

  • Almari, S., Langley, R., J., Alamoudi, A., O., 2013. Improved Performance of 2.45 GHz Implanted Patch Antenna for Wireless Communication. Antennas & Propagation Conference, 11-12 November 2013, Loughborough, UK.
  • Armağan, O., Kahriman, M., 2016. 2.45 GHz, 3.7 GHz Ve 5.8 GHz Frekanslarda Çalışan Üç-Bant Yama Anten Tasarımı, Mühendislik Bilimleri Ve Tasarım Dergisi, vol. 4, pp. 189-193.
  • Chien, T., Cheng, C., Yang, C., Jiang, C., Luo, C., 2010. Development of Nonsuperstrate Implantable Low-Profile CPW-Fed Ceramic Antennas. IEEE Antennas and Wireless Propagation Letters, 9, 599-602.
  • Doddipalli, S., Kothari, A., Peshwe, P., 2017. A Low Profile Ultrawide Band Monopole Antenna for Wearable Applications. International Journal of Antennas and Propagation, 2017, India, 9 pages.
  • Duan, Z., Guo, Y., X., Xue, R., F., Je, M., Kwong, D., L., 2012. Differentially Fed Dual-Band Implantable Antenna for Biomedical Applications. IEEE Transactions on Antennas and Propagation, 60(12), 5587-5595.
  • Fukunaga, K., Watanabe, S., Yamanaka, Y., 2004. Dielectric Properties of Tissue-Equivalent Liquids and Their Effects on Specific Absorption Rate. IEEE Transactions on Electromagnetic Compatibility, 46(1), 126-129.
  • Gözel, M., A., Kasar, Ö., Kahriman, M., 2019. 868 MHz UHF Bandında H-Şeklinde Katlanmış İmplant Mikroşerit Dipol Anten Tasarımı. DÜMF Mühendislik Dergisi, 10(3), 797-806.
  • Ha, J., Kwon, K., Choi, J., 2011. Compact Zeroth-Order Resonance Antenna for Implantable Biomedical Service Applications. Electronics Letters, 47(23), 1267-1269.
  • Hall P. S., Hao Y., 2012. Antennas and Propagation for Body-Centric Wireless Communications, 2 nd ed., Artech House, Boston, 2012.
  • Huang, W., Kishk, A., A., 2011. Embedded Spiral Microstrip Implantable Antenna. International Journal of Antennas and Propagation, June 2011, 6 pages.
  • Karaçolak, T., Hood, A., Z., Topsakal, E., 2008. Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring. IEEE Transactions on Microwave Theory and Techniques, 56(4), 1001-1008.
  • Kim, J., & Rahmat-Samii, Y., 2004. Implanted Antennas İnside a Human Body: Simulations, Designs, and Characterizations. IEEE Transactions on Microwave Theory and Techniques, 52(8), 1934-1943.
  • Kiourti, A., Nikita, K., S., 2012. Miniature Scalp-Implantable Antennas for Telemetry in The MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis. IEEE Transactions on Antennas and Propagation, 60(8), 3568-3575.
  • Kumar, S., A., Raj, M., A., Shanmuganantham, T., 2017. Analysis and Desing of CPW Fed Antenna at ISM Band for Biomedical Application. Alexandria Engineering Journal, 57, 723-727.
  • Lee J. H., 2015. Human Implantable Arrhythmia Monitoring Sensor with Wireless Power and Data Transmission Technique, Austin J Biosens & Bioelectron, 1(2), 1008-1014.
  • Li-Jie, X., Yong-Xin, G., Wen, W., 2012. Dual-Band Implantable Antenna with Open-End Slots on Ground. IEEE Antennas and Wireless Propagation Letters, 11, 1564-1567.
  • Li-Jie, X., Yong-Xin, G, Wen, W., 2014. Miniaturized Dual Band Antenna for Implantable Wireless Communications. IEEE Antennas and Wireless Propagation Letters, 13, 1060-1063.
  • Merli, F., Bolomey, L., Zürcher, J.-F., Corradini, G., Meurville, E., & Skrivervik, A. K. 2011. Design, Realization and Measurements of a Miniature Antenna for Implantable Wireless Communication Systems. IEEE Transactions on Antennas and Propagation, 59(10), 3544- 3555.
  • Polat, L., N., Ö., 2011. Elektromanyetik Alan Yayıcı Cihazların Kas Dokusunda oluşturduğu Etkinin Modellenmesi ve Analizi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, YL Tezi, 65s, Isparta
  • See, T., S., P., Qing, X., Chen, Z., N., 2015. Desing and Characterization of on-Head Antenna Systems for Neural Motor Prosthesis. 9 th European Conference on Antennas and Propagation (EuCAP), 13-17 August April 2015, Lisbon Portugal.
  • Singh K., 2005. Biotelemetry: Could Technological Developments Assist Healthcare in Rural India, Rural and Remote Health Journal, 234(5), 1-6.
  • Sondas A., Ucar M. H. B., Uras E., 2014. A Dual-Band Implantable Antenna Desing, 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, 23-25 April.
  • Topsakal E., 2009. Antennas for Medikal Applications: Ongoing Research and Future Challenges, International Conference on Electromagnetics in Advanced Application (ICEAA), Torino, Italy.
  • Usluer, M., 2017. Tümleyen Yarık Halka Elemanlarını Temel Alan İmplant Anten Tasarımı ve Üretimi. Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, YL Tezi, 51s, Antalya.
  • Yamaç, Y., E., 2015. Biyomedikal Uygulaması İçin İmplant Edilebilen Mikroşerit Anten Tasarımı ve Üretimi. Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, YL Tezi, 46s, Antalya.
  • Yang L., Vyas R., Rida A., Pan J., Tentzeris M. M., 2008. Wearable RFID-Enabled Sensor Nodes for Biomedical Applications, 2008 58 th Electronic Componenets and Technology Conference, Lake Buena Vista, FL, ABD.
  • Yeap, K., Voon, C., Hiraguri, T., Nisar, H., 2019. A Compact Dual-Band Implantable Antenna for Medical Telemetry. International Conference on Open Source Systems and Technologies (ICOSST), 17-19 Dec. 2015, Lahore Pakistan.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi